ﻻ يوجد ملخص باللغة العربية
Most face super-resolution methods assume that low-resolution and high-resolution manifolds have similar local geometrical structure, hence learn local models on the lowresolution manifolds (e.g. sparse or locally linear embedding models), which are then applied on the high-resolution manifold. However, the low-resolution manifold is distorted by the oneto-many relationship between low- and high- resolution patches. This paper presents a method which learns linear models based on the local geometrical structure on the high-resolution manifold rather than on the low-resolution manifold. For this, in a first step, the low-resolution patch is used to derive a globally optimal estimate of the high-resolution patch. The approximated solution is shown to be close in Euclidean space to the ground-truth but is generally smooth and lacks the texture details needed by state-ofthe-art face recognizers. This first estimate allows us to find the support of the high-resolution manifold using sparse coding (SC), which are then used as support for learning a local projection (or upscaling) model between the low-resolution and the highresolution manifolds using Multivariate Ridge Regression (MRR). Experimental results show that the proposed method outperforms six face super-resolution methods in terms of both recognition and quality. These results also reveal that the recognition and quality are significantly affected by the method used for stitching all super-resolved patches together, where quilting was found to better preserve the texture details which helps to achieve higher recognition rates.
There are many factors affecting visual face recognition, such as low resolution images, aging, illumination and pose variance, etc. One of the most important problem is low resolution face images which can result in bad performance on face recogniti
The cross-sensor gap is one of the challenges that have aroused much research interests in Heterogeneous Face Recognition (HFR). Although recent methods have attempted to fill the gap with deep generative networks, most of them suffer from the inevit
In this paper, we study the task of hallucinating an authentic high-resolution (HR) face from an occluded thumbnail. We propose a multi-stage Progressive Upsampling and Inpainting Generative Adversarial Network, dubbed Pro-UIGAN, which exploits facia
Recent deep learning based face recognition methods have achieved great performance, but it still remains challenging to recognize very low-resolution query face like 28x28 pixels when CCTV camera is far from the captured subject. Such face with very
Existing face hallucination methods based on convolutional neural networks (CNN) have achieved impressive performance on low-resolution (LR) faces in a normal illumination condition. However, their performance degrades dramatically when LR faces are