ﻻ يوجد ملخص باللغة العربية
Existing face hallucination methods based on convolutional neural networks (CNN) have achieved impressive performance on low-resolution (LR) faces in a normal illumination condition. However, their performance degrades dramatically when LR faces are captured in low or non-uniform illumination conditions. This paper proposes a Copy and Paste Generative Adversarial Network (CPGAN) to recover authentic high-resolution (HR) face images while compensating for low and non-uniform illumination. To this end, we develop two key components in our CPGAN: internal and external Copy and Paste nets (CPnets). Specifically, our internal CPnet exploits facial information residing in the input image to enhance facial details; while our external CPnet leverages an external HR face for illumination compensation. A new illumination compensation loss is thus developed to capture illumination from the external guided face image effectively. Furthermore, our method offsets illumination and upsamples facial details alternately in a coarse-to-fine fashion, thus alleviating the correspondence ambiguity between LR inputs and external HR inputs. Extensive experiments demonstrate that our method manifests authentic HR face images in a uniform illumination condition and outperforms state-of-the-art methods qualitatively and quantitatively.
In this paper, we study the task of hallucinating an authentic high-resolution (HR) face from an occluded thumbnail. We propose a multi-stage Progressive Upsampling and Inpainting Generative Adversarial Network, dubbed Pro-UIGAN, which exploits facia
There are many factors affecting visual face recognition, such as low resolution images, aging, illumination and pose variance, etc. One of the most important problem is low resolution face images which can result in bad performance on face recogniti
We present a novel deep learning based algorithm for video inpainting. Video inpainting is a process of completing corrupted or missing regions in videos. Video inpainting has additional challenges compared to image inpainting due to the extra tempor
The aim of re-identification is to match objects in surveillance cameras with different viewpoints. Although ReID is developing at a considerably rapid pace, there is currently no processing method for the ReID task in multiple scenarios. However, su
Recent deep learning based face recognition methods have achieved great performance, but it still remains challenging to recognize very low-resolution query face like 28x28 pixels when CCTV camera is far from the captured subject. Such face with very