ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-Resolution Face Recognition via Prior-Aided Face Hallucination and Residual Knowledge Distillation

490   0   0.0 ( 0 )
 نشر من قبل Hanyang Kong
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent deep learning based face recognition methods have achieved great performance, but it still remains challenging to recognize very low-resolution query face like 28x28 pixels when CCTV camera is far from the captured subject. Such face with very low-resolution is totally out of detail information of the face identity compared to normal resolution in a gallery and hard to find corresponding faces therein. To this end, we propose a Resolution Invariant Model (RIM) for addressing such cross-resolution face recognition problems, with three distinct novelties. First, RIM is a novel and unified deep architecture, containing a Face Hallucination sub-Net (FHN) and a Heterogeneous Recognition sub-Net (HRN), which are jointly learned end to end. Second, FHN is a well-designed tri-path Generative Adversarial Network (GAN) which simultaneously perceives facial structure and geometry prior information, i.e. landmark heatmaps and parsing maps, incorporated with an unsupervised cross-domain adversarial training strategy to super-resolve very low-resolution query image to its 8x larger ones without requiring them to be well aligned. Third, HRN is a generic Convolutional Neural Network (CNN) for heterogeneous face recognition with our proposed residual knowledge distillation strategy for learning discriminative yet generalized feature representation. Quantitative and qualitative experiments on several benchmarks demonstrate the superiority of the proposed model over the state-of-the-arts. Codes and models will be released upon acceptance.

قيم البحث

اقرأ أيضاً

75 - Boyan Duan , Chaoyou Fu , Yi Li 2019
The cross-sensor gap is one of the challenges that have aroused much research interests in Heterogeneous Face Recognition (HFR). Although recent methods have attempted to fill the gap with deep generative networks, most of them suffer from the inevit able misalignment between different face modalities. Instead of imaging sensors, the misalignment primarily results from facial geometric variations that are independent of the spectrum. Rather than building a monolithic but complex structure, this paper proposes a Pose Aligned Cross-spectral Hallucination (PACH) approach to disentangle the independent factors and deal with them in individual stages. In the first stage, an Unsupervised Face Alignment (UFA) module is designed to align the facial shapes of the near-infrared (NIR) images with those of the visible (VIS) images in a generative way, where UV maps are effectively utilized as the shape guidance. Thus the task of the second stage becomes spectrum translation with aligned paired data. We develop a Texture Prior Synthesis (TPS) module to achieve complexion control and consequently generate more realistic VIS images than existing methods. Experiments on three challenging NIR-VIS datasets verify the effectiveness of our approach in producing visually appealing images and achieving state-of-the-art performance in HFR.
Knowledge Distillation (KD) refers to transferring knowledge from a large model to a smaller one, which is widely used to enhance model performance in machine learning. It tries to align embedding spaces generated from the teacher and the student mod el (i.e. to make images corresponding to the same semantics share the same embedding across different models). In this work, we focus on its application in face recognition. We observe that existing knowledge distillation models optimize the proxy tasks that force the student to mimic the teachers behavior, instead of directly optimizing the face recognition accuracy. Consequently, the obtained student models are not guaranteed to be optimal on the target task or able to benefit from advanced constraints, such as large margin constraints (e.g. margin-based softmax). We then propose a novel method named ProxylessKD that directly optimizes face recognition accuracy by inheriting the teachers classifier as the students classifier to guide the student to learn discriminative embeddings in the teachers embedding space. The proposed ProxylessKD is very easy to implement and sufficiently generic to be extended to other tasks beyond face recognition. We conduct extensive experiments on standard face recognition benchmarks, and the results demonstrate that ProxylessKD achieves superior performance over existing knowledge distillation methods.
There are many factors affecting visual face recognition, such as low resolution images, aging, illumination and pose variance, etc. One of the most important problem is low resolution face images which can result in bad performance on face recogniti on. Most of the general face recognition algorithms usually assume a sufficient resolution for the face images. However, in practice many applications often do not have sufficient image resolutions. The modern face hallucination models demonstrate reasonable performance to reconstruct high-resolution images from its corresponding low resolution images. However, they do not consider identity level information during hallucination which directly affects results of the recognition of low resolution faces. To address this issue, we propose a Face Hallucination Generative Adversarial Network (FH-GAN) which improves the quality of low resolution face images and accurately recognize those low quality images. Concretely, we make the following contributions: 1) we propose FH-GAN network, an end-to-end system, that improves both face hallucination and face recognition simultaneously. The novelty of this proposed network depends on incorporating identity information in a GAN-based face hallucination algorithm via combining a face recognition network for identity preserving. 2) We also propose a new face hallucination network, namely Dense Sparse Network (DSNet), which improves upon the state-of-art in face hallucination. 3) We demonstrate benefits of training the face recognition and GAN-based DSNet jointly by reporting good result on face hallucination and recognition.
Face recognition is an important yet challenging problem in computer vision. A major challenge in practical face recognition applications lies in significant variations between profile and frontal faces. Traditional techniques address this challenge either by synthesizing frontal faces or by pose invariant learning. In this paper, we propose a novel method with Lie algebra theory to explore how face rotation in the 3D space affects the deep feature generation process of convolutional neural networks (CNNs). We prove that face rotation in the image space is equivalent to an additive residual component in the feature space of CNNs, which is determined solely by the rotation. Based on this theoretical finding, we further design a Lie Algebraic Residual Network (LARNet) for tackling pose robust face recognition. Our LARNet consists of a residual subnet for decoding rotation information from input face images, and a gating subnet to learn rotation magnitude for controlling the strength of the residual component contributing to the feature learning process. Comprehensive experimental evaluations on both frontal-profile face datasets and general face recognition datasets convincingly demonstrate that our method consistently outperforms the state-of-the-art ones.
Deep neural networks have rapidly become the mainstream method for face recognition. However, deploying such models that contain an extremely large number of parameters to embedded devices or in application scenarios with limited memory footprint is challenging. In this work, we present an extremely lightweight and accurate face recognition solution. We utilize neural architecture search to develop a new family of face recognition models, namely PocketNet. We also propose to enhance the verification performance of the compact model by presenting a novel training paradigm based on knowledge distillation, namely the multi-step knowledge distillation. We present an extensive experimental evaluation and comparisons with the recent compact face recognition models on nine different benchmarks including large-scale evaluation benchmarks such as IJB-B, IJB-C, and MegaFace. PocketNets have consistently advanced the state-of-the-art (SOTA) face recognition performance on nine mainstream benchmarks when considering the same level of model compactness. With 0.92M parameters, our smallest network PocketNetS-128 achieved very competitive results to recent SOTA compacted models that contain more than 4M parameters. Training codes and pre-trained models are publicly released https://github.com/fdbtrs/PocketNet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا