ﻻ يوجد ملخص باللغة العربية
The cross-sensor gap is one of the challenges that have aroused much research interests in Heterogeneous Face Recognition (HFR). Although recent methods have attempted to fill the gap with deep generative networks, most of them suffer from the inevitable misalignment between different face modalities. Instead of imaging sensors, the misalignment primarily results from facial geometric variations that are independent of the spectrum. Rather than building a monolithic but complex structure, this paper proposes a Pose Aligned Cross-spectral Hallucination (PACH) approach to disentangle the independent factors and deal with them in individual stages. In the first stage, an Unsupervised Face Alignment (UFA) module is designed to align the facial shapes of the near-infrared (NIR) images with those of the visible (VIS) images in a generative way, where UV maps are effectively utilized as the shape guidance. Thus the task of the second stage becomes spectrum translation with aligned paired data. We develop a Texture Prior Synthesis (TPS) module to achieve complexion control and consequently generate more realistic VIS images than existing methods. Experiments on three challenging NIR-VIS datasets verify the effectiveness of our approach in producing visually appealing images and achieving state-of-the-art performance in HFR.
Recent deep learning based face recognition methods have achieved great performance, but it still remains challenging to recognize very low-resolution query face like 28x28 pixels when CCTV camera is far from the captured subject. Such face with very
In this paper, we study the task of hallucinating an authentic high-resolution (HR) face from an occluded thumbnail. We propose a multi-stage Progressive Upsampling and Inpainting Generative Adversarial Network, dubbed Pro-UIGAN, which exploits facia
Existing face hallucination methods based on convolutional neural networks (CNN) have achieved impressive performance on low-resolution (LR) faces in a normal illumination condition. However, their performance degrades dramatically when LR faces are
Most face super-resolution methods assume that low-resolution and high-resolution manifolds have similar local geometrical structure, hence learn local models on the lowresolution manifolds (e.g. sparse or locally linear embedding models), which are
There are many factors affecting visual face recognition, such as low resolution images, aging, illumination and pose variance, etc. One of the most important problem is low resolution face images which can result in bad performance on face recogniti