ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid Federated Learning: Algorithms and Implementation

103   0   0.0 ( 0 )
 نشر من قبل Xinwei Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning (FL) is a recently proposed distributed machine learning paradigm dealing with distributed and private data sets. Based on the data partition pattern, FL is often categorized into horizontal, vertical, and hybrid settings. Despite the fact that many works have been developed for the first two approaches, the hybrid FL setting (which deals with partially overlapped feature space and sample space) remains less explored, though this setting is extremely important in practice. In this paper, we first set up a new model-matching-based problem formulation for hybrid FL, then propose an efficient algorithm that can collaboratively train the global and local models to deal with full and partial featured data. We conduct numerical experiments on the multi-view ModelNet40 data set to validate the performance of the proposed algorithm. To the best of our knowledge, this is the first formulation and algorithm developed for the hybrid FL.



قيم البحث

اقرأ أيضاً

The conventional federated learning (FedL) architecture distributes machine learning (ML) across worker devices by having them train local models that are periodically aggregated by a server. FedL ignores two important characteristics of contemporary wireless networks, however: (i) the network may contain heterogeneous communication/computation resources, while (ii) there may be significant overlaps in devices local data distributions. In this work, we develop a novel optimization methodology that jointly accounts for these factors via intelligent device sampling complemented by device-to-device (D2D) offloading. Our optimization aims to select the best combination of sampled nodes and data offloading configuration to maximize FedL training accuracy subject to realistic constraints on the network topology and device capabilities. Theoretical analysis of the D2D offloading subproblem leads to new FedL convergence bounds and an efficient sequential convex optimizer. Using this result, we develop a sampling methodology based on graph convolutional networks (GCNs) which learns the relationship between network attributes, sampled nodes, and resulting offloading that maximizes FedL accuracy. Through evaluation on real-world datasets and network measurements from our IoT testbed, we find that our methodology while sampling less than 5% of all devices outperforms conventional FedL substantially both in terms of trained model accuracy and required resource utilization.
533 - Xingyu Li , Zhe Qu , Bo Tang 2021
Federated learning (FL) is a new machine learning framework which trains a joint model across a large amount of decentralized computing devices. Existing methods, e.g., Federated Averaging (FedAvg), are able to provide an optimization guarantee by sy nchronously training the joint model, but usually suffer from stragglers, i.e., IoT devices with low computing power or communication bandwidth, especially on heterogeneous optimization problems. To mitigate the influence of stragglers, this paper presents a novel FL algorithm, namely Hybrid Federated Learning (HFL), to achieve a learning balance in efficiency and effectiveness. It consists of two major components: synchronous kernel and asynchronous updater. Unlike traditional synchronous FL methods, our HFL introduces the asynchronous updater which actively pulls unsynchronized and delayed local weights from stragglers. An adaptive approximation method, Adaptive Delayed-SGD (AD-SGD), is proposed to merge the delayed local updates into the joint model. The theoretical analysis of HFL shows that the convergence rate of the proposed algorithm is $mathcal{O}(frac{1}{t+tau})$ for both convex and non-convex optimization problems.
Personalization methods in federated learning aim to balance the benefits of federated and local training for data availability, communication cost, and robustness to client heterogeneity. Approaches that require clients to communicate all model para meters can be undesirable due to privacy and communication constraints. Other approaches require always-available or stateful clients, impractical in large-scale cross-device settings. We introduce Federated Reconstruction, the first model-agnostic framework for partially local federated learning suitable for training and inference at scale. We motivate the framework via a connection to model-agnostic meta learning, empirically demonstrate its performance over existing approaches for collaborative filtering and next word prediction, and release an open-source library for evaluating approaches in this setting. We also describe the successful deployment of this approach at scale for federated collaborative filtering in a mobile keyboard application.
We consider strongly convex-concave minimax problems in the federated setting, where the communication constraint is the main bottleneck. When clients are arbitrarily heterogeneous, a simple Minibatch Mirror-prox achieves the best performance. As the clients become more homogeneous, using multiple local gradient updates at the clients significantly improves upon Minibatch Mirror-prox by communicating less frequently. Our goal is to design an algorithm that can harness the benefit of similarity in the clients while recovering the Minibatch Mirror-prox performance under arbitrary heterogeneity (up to log factors). We give the first federated minimax optimization algorithm that achieves this goal. The main idea is to combine (i) SCAFFOLD (an algorithm that performs variance reduction across clients for convex optimization) to erase the worst-case dependency on heterogeneity and (ii) Catalyst (a framework for acceleration based on modifying the objective) to accelerate convergence without amplifying client drift. We prove that this algorithm achieves our goal, and include experiments to validate the theory.
Present-day federated learning (FL) systems deployed over edge networks have to consistently deal with a large number of workers with high degrees of heterogeneity in data and/or computing capabilities. This diverse set of workers necessitates the de velopment of FL algorithms that allow: (1) flexible worker participation that grants the workers capability to engage in training at will, (2) varying number of local updates (based on computational resources) at each worker along with asynchronous communication with the server, and (3) heterogeneous data across workers. To address these challenges, in this work, we propose a new paradigm in FL called ``Anarchic Federated Learning (AFL). In stark contrast to conventional FL models, each worker in AFL has complete freedom to choose i) when to participate in FL, and ii) the number of local steps to perform in each round based on its current situation (e.g., battery level, communication channels, privacy concerns). However, AFL also introduces significant challenges in algorithmic design because the server needs to handle the chaotic worker behaviors. Toward this end, we propose two Anarchic FedAvg-like algorithms with two-sided learning rates for both cross-device and cross-silo settings, which are named AFedAvg-TSLR-CD and AFedAvg-TSLR-CS, respectively. For general worker information arrival processes, we show that both algorithms retain the highly desirable linear speedup effect in the new AFL paradigm. Moreover, we show that our AFedAvg-TSLR algorithmic framework can be viewed as a {em meta-algorithm} for AFL in the sense that they can utilize advanced FL algorithms as worker- and/or server-side optimizers to achieve enhanced performance under AFL. We validate the proposed algorithms with extensive experiments on real-world datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا