ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated Reconstruction: Partially Local Federated Learning

99   0   0.0 ( 0 )
 نشر من قبل Karan Singhal
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Personalization methods in federated learning aim to balance the benefits of federated and local training for data availability, communication cost, and robustness to client heterogeneity. Approaches that require clients to communicate all model parameters can be undesirable due to privacy and communication constraints. Other approaches require always-available or stateful clients, impractical in large-scale cross-device settings. We introduce Federated Reconstruction, the first model-agnostic framework for partially local federated learning suitable for training and inference at scale. We motivate the framework via a connection to model-agnostic meta learning, empirically demonstrate its performance over existing approaches for collaborative filtering and next word prediction, and release an open-source library for evaluating approaches in this setting. We also describe the successful deployment of this approach at scale for federated collaborative filtering in a mobile keyboard application.

قيم البحث

اقرأ أيضاً

The federated learning (FL) framework trains a machine learning model using decentralized data stored at edge client devices by periodically aggregating locally trained models. Popular optimization algorithms of FL use vanilla (stochastic) gradient d escent for both local updates at clients and global updates at the aggregating server. Recently, adaptive optimization methods such as AdaGrad have been studied for server updates. However, the effect of using adaptive optimization methods for local updates at clients is not yet understood. We show in both theory and practice that while local adaptive methods can accelerate convergence, they can cause a non-vanishing solution bias, where the final converged solution may be different from the stationary point of the global objective function. We propose correction techniques to overcome this inconsistency and complement the local adaptive methods for FL. Extensive experiments on realistic federated training tasks show that the proposed algorithms can achieve faster convergence and higher test accuracy than the baselines without local adaptivity.
Present-day federated learning (FL) systems deployed over edge networks have to consistently deal with a large number of workers with high degrees of heterogeneity in data and/or computing capabilities. This diverse set of workers necessitates the de velopment of FL algorithms that allow: (1) flexible worker participation that grants the workers capability to engage in training at will, (2) varying number of local updates (based on computational resources) at each worker along with asynchronous communication with the server, and (3) heterogeneous data across workers. To address these challenges, in this work, we propose a new paradigm in FL called ``Anarchic Federated Learning (AFL). In stark contrast to conventional FL models, each worker in AFL has complete freedom to choose i) when to participate in FL, and ii) the number of local steps to perform in each round based on its current situation (e.g., battery level, communication channels, privacy concerns). However, AFL also introduces significant challenges in algorithmic design because the server needs to handle the chaotic worker behaviors. Toward this end, we propose two Anarchic FedAvg-like algorithms with two-sided learning rates for both cross-device and cross-silo settings, which are named AFedAvg-TSLR-CD and AFedAvg-TSLR-CS, respectively. For general worker information arrival processes, we show that both algorithms retain the highly desirable linear speedup effect in the new AFL paradigm. Moreover, we show that our AFedAvg-TSLR algorithmic framework can be viewed as a {em meta-algorithm} for AFL in the sense that they can utilize advanced FL algorithms as worker- and/or server-side optimizers to achieve enhanced performance under AFL. We validate the proposed algorithms with extensive experiments on real-world datasets.
Federated learning is an effective approach to realize collaborative learning among edge devices without exchanging raw data. In practice, these devices may connect to local hubs instead of connecting to the global server (aggregator) directly. Due t o the (possibly limited) computation capability of these local hubs, it is reasonable to assume that they can perform simple averaging operations. A natural question is whether such local averaging is beneficial under different system parameters and how much gain can be obtained compared to the case without such averaging. In this paper, we study hierarchical federated learning with stochastic gradient descent (HF-SGD) and conduct a thorough theoretical analysis to analyze its convergence behavior. In particular, we first consider the two-level HF-SGD (one level of local averaging) and then extend this result to arbitrary number of levels (multiple levels of local averaging). The analysis demonstrates the impact of local averaging precisely as a function of system parameters. Due to the higher communication cost of global averaging, a strategy of decreasing the global averaging frequency and increasing the local averaging frequency is proposed. Experiments validate the proposed theoretical analysis and the advantages of HF-SGD.
99 - Ye Xue , Diego Klabjan , Yuan Luo 2021
Federated learning is a distributed machine learning paradigm where multiple data owners (clients) collaboratively train one machine learning model while keeping data on their own devices. The heterogeneity of client datasets is one of the most impor tant challenges of federated learning algorithms. Studies have found performance reduction with standard federated algorithms, such as FedAvg, on non-IID data. Many existing works on handling non-IID data adopt the same aggregation framework as FedAvg and focus on improving model updates either on the server side or on clients. In this work, we tackle this challenge in a different view by introducing redistribution rounds that delay the aggregation. We perform experiments on multiple tasks and show that the proposed framework significantly improves the performance on non-IID data.
Federated learning is a new learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. As a flexible learning setting, federated learning has the potential to integrate with other learning f rameworks. We conduct a focused survey of federated learning in conjunction with other learning algorithms. Specifically, we explore various learning algorithms to improve the vanilla federated averaging algorithm and review model fusion methods such as adaptive aggregation, regularization, clustered methods, and Bayesian methods. Following the emerging trends, we also discuss federated learning in the intersection with other learning paradigms, termed as federated x learning, where x includes multitask learning, meta-learning, transfer learning, unsupervised learning, and reinforcement learning. This survey reviews the state of the art, challenges, and future directions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا