ترغب بنشر مسار تعليمي؟ اضغط هنا

Device Sampling for Heterogeneous Federated Learning: Theory, Algorithms, and Implementation

98   0   0.0 ( 0 )
 نشر من قبل Su Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The conventional federated learning (FedL) architecture distributes machine learning (ML) across worker devices by having them train local models that are periodically aggregated by a server. FedL ignores two important characteristics of contemporary wireless networks, however: (i) the network may contain heterogeneous communication/computation resources, while (ii) there may be significant overlaps in devices local data distributions. In this work, we develop a novel optimization methodology that jointly accounts for these factors via intelligent device sampling complemented by device-to-device (D2D) offloading. Our optimization aims to select the best combination of sampled nodes and data offloading configuration to maximize FedL training accuracy subject to realistic constraints on the network topology and device capabilities. Theoretical analysis of the D2D offloading subproblem leads to new FedL convergence bounds and an efficient sequential convex optimizer. Using this result, we develop a sampling methodology based on graph convolutional networks (GCNs) which learns the relationship between network attributes, sampled nodes, and resulting offloading that maximizes FedL accuracy. Through evaluation on real-world datasets and network measurements from our IoT testbed, we find that our methodology while sampling less than 5% of all devices outperforms conventional FedL substantially both in terms of trained model accuracy and required resource utilization.

قيم البحث

اقرأ أيضاً

Federated learning (FL) is a recently proposed distributed machine learning paradigm dealing with distributed and private data sets. Based on the data partition pattern, FL is often categorized into horizontal, vertical, and hybrid settings. Despite the fact that many works have been developed for the first two approaches, the hybrid FL setting (which deals with partially overlapped feature space and sample space) remains less explored, though this setting is extremely important in practice. In this paper, we first set up a new model-matching-based problem formulation for hybrid FL, then propose an efficient algorithm that can collaboratively train the global and local models to deal with full and partial featured data. We conduct numerical experiments on the multi-view ModelNet40 data set to validate the performance of the proposed algorithm. To the best of our knowledge, this is the first formulation and algorithm developed for the hybrid FL.
The popular federated edge learning (FEEL) framework allows privacy-preserving collaborative model training via frequent learning-updates exchange between edge devices and server. Due to the constrained bandwidth, only a subset of devices can upload their updates at each communication round. This has led to an active research area in FEEL studying the optimal device scheduling policy for minimizing communication time. However, owing to the difficulty in quantifying the exact communication time, prior work in this area can only tackle the problem partially by considering either the communication rounds or per-round latency, while the total communication time is determined by both metrics. To close this gap, we make the first attempt in this paper to formulate and solve the communication time minimization problem. We first derive a tight bound to approximate the communication time through cross-disciplinary effort involving both learning theory for convergence analysis and communication theory for per-round latency analysis. Building on the analytical result, an optimized probabilistic scheduling policy is derived in closed-form by solving the approximate communication time minimization problem. It is found that the optimized policy gradually turns its priority from suppressing the remaining communication rounds to reducing per-round latency as the training process evolves. The effectiveness of the proposed scheme is demonstrated via a use case on collaborative 3D objective detection in autonomous driving.
Owing to the increasing need for massive data analysis and model training at the network edge, as well as the rising concerns about the data privacy, a new distributed training framework called federated learning (FL) has emerged. In each iteration o f FL (called round), the edge devices update local models based on their own data and contribute to the global training by uploading the model updates via wireless channels. Due to the limited spectrum resources, only a portion of the devices can be scheduled in each round. While most of the existing work on scheduling focuses on the convergence of FL w.r.t. rounds, the convergence performance under a total training time budget is not yet explored. In this paper, a joint bandwidth allocation and scheduling problem is formulated to capture the long-term convergence performance of FL, and is solved by being decoupled into two sub-problems. For the bandwidth allocation sub-problem, the derived optimal solution suggests to allocate more bandwidth to the devices with worse channel conditions or weaker computation capabilities. For the device scheduling sub-problem, by revealing the trade-off between the number of rounds required to attain a certain model accuracy and the latency per round, a greedy policy is inspired, that continuously selects the device that consumes the least time in model updating until achieving a good trade-off between the learning efficiency and latency per round. The experiments show that the proposed policy outperforms other state-of-the-art scheduling policies, with the best achievable model accuracy under training time budgets.
The predominant paradigm for using machine learning models on a device is to train a model in the cloud and perform inference using the trained model on the device. However, with increasing number of smart devices and improved hardware, there is inte rest in performing model training on the device. Given this surge in interest, a comprehensive survey of the field from a device-agnostic perspective sets the stage for both understanding the state-of-the-art and for identifying open challenges and future avenues of research. However, on-device learning is an expansive field with connections to a large number of related topics in AI and machine learning (including online learning, model adaptation, one/few-shot learning, etc.). Hence, covering such a large number of topics in a single survey is impractical. This survey finds a middle ground by reformulating the problem of on-device learning as resource constrained learning where the resources are compute and memory. This reformulation allows tools, techniques, and algorithms from a wide variety of research areas to be compared equitably. In addition to summarizing the state-of-the-art, the survey also identifies a number of challenges and next steps for both the algorithmic and theoretical aspects of on-device learning.
We propose a federated learning framework to handle heterogeneous client devices which do not conform to the population data distribution. The approach hinges upon a parameterized superquantile-based objective, where the parameter ranges over levels of conformity. We present an optimization algorithm and establish its convergence to a stationary point. We show how to practically implement it using secure aggregation by interleaving iterations of the usual federated averaging method with device filtering. We conclude with numerical experiments on neural networks as well as linear models on tasks from computer vision and natural language processing.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا