ترغب بنشر مسار تعليمي؟ اضغط هنا

Anarchic Federated Learning

255   0   0.0 ( 0 )
 نشر من قبل Haibo Yang Mr
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Present-day federated learning (FL) systems deployed over edge networks have to consistently deal with a large number of workers with high degrees of heterogeneity in data and/or computing capabilities. This diverse set of workers necessitates the development of FL algorithms that allow: (1) flexible worker participation that grants the workers capability to engage in training at will, (2) varying number of local updates (based on computational resources) at each worker along with asynchronous communication with the server, and (3) heterogeneous data across workers. To address these challenges, in this work, we propose a new paradigm in FL called ``Anarchic Federated Learning (AFL). In stark contrast to conventional FL models, each worker in AFL has complete freedom to choose i) when to participate in FL, and ii) the number of local steps to perform in each round based on its current situation (e.g., battery level, communication channels, privacy concerns). However, AFL also introduces significant challenges in algorithmic design because the server needs to handle the chaotic worker behaviors. Toward this end, we propose two Anarchic FedAvg-like algorithms with two-sided learning rates for both cross-device and cross-silo settings, which are named AFedAvg-TSLR-CD and AFedAvg-TSLR-CS, respectively. For general worker information arrival processes, we show that both algorithms retain the highly desirable linear speedup effect in the new AFL paradigm. Moreover, we show that our AFedAvg-TSLR algorithmic framework can be viewed as a {em meta-algorithm} for AFL in the sense that they can utilize advanced FL algorithms as worker- and/or server-side optimizers to achieve enhanced performance under AFL. We validate the proposed algorithms with extensive experiments on real-world datasets.

قيم البحث

اقرأ أيضاً

Personalization methods in federated learning aim to balance the benefits of federated and local training for data availability, communication cost, and robustness to client heterogeneity. Approaches that require clients to communicate all model para meters can be undesirable due to privacy and communication constraints. Other approaches require always-available or stateful clients, impractical in large-scale cross-device settings. We introduce Federated Reconstruction, the first model-agnostic framework for partially local federated learning suitable for training and inference at scale. We motivate the framework via a connection to model-agnostic meta learning, empirically demonstrate its performance over existing approaches for collaborative filtering and next word prediction, and release an open-source library for evaluating approaches in this setting. We also describe the successful deployment of this approach at scale for federated collaborative filtering in a mobile keyboard application.
99 - Ye Xue , Diego Klabjan , Yuan Luo 2021
Federated learning is a distributed machine learning paradigm where multiple data owners (clients) collaboratively train one machine learning model while keeping data on their own devices. The heterogeneity of client datasets is one of the most impor tant challenges of federated learning algorithms. Studies have found performance reduction with standard federated algorithms, such as FedAvg, on non-IID data. Many existing works on handling non-IID data adopt the same aggregation framework as FedAvg and focus on improving model updates either on the server side or on clients. In this work, we tackle this challenge in a different view by introducing redistribution rounds that delay the aggregation. We perform experiments on multiple tasks and show that the proposed framework significantly improves the performance on non-IID data.
Federated learning is a new learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. As a flexible learning setting, federated learning has the potential to integrate with other learning f rameworks. We conduct a focused survey of federated learning in conjunction with other learning algorithms. Specifically, we explore various learning algorithms to improve the vanilla federated averaging algorithm and review model fusion methods such as adaptive aggregation, regularization, clustered methods, and Bayesian methods. Following the emerging trends, we also discuss federated learning in the intersection with other learning paradigms, termed as federated x learning, where x includes multitask learning, meta-learning, transfer learning, unsupervised learning, and reinforcement learning. This survey reviews the state of the art, challenges, and future directions.
Federated learning (FL) is a distributed learning paradigm that enables a large number of devices to collaboratively learn a model without sharing their raw data. Despite its practical efficiency and effectiveness, the iterative on-device learning pr ocess incurs a considerable cost in terms of learning time and energy consumption, which depends crucially on the number of selected clients and the number of local iterations in each training round. In this paper, we analyze how to design adaptive FL that optimally chooses these essential control variables to minimize the total cost while ensuring convergence. Theoretically, we analytically establish the relationship between the total cost and the control variables with the convergence upper bound. To efficiently solve the cost minimization problem, we develop a low-cost sampling-based algorithm to learn the convergence related unknown parameters. We derive important solution properties that effectively identify the design principles for different metric preferences. Practically, we evaluate our theoretical results both in a simulated environment and on a hardware prototype. Experimental evidence verifies our derived properties and demonstrates that our proposed solution achieves near-optimal performance for various datasets, different machine learning models, and heterogeneous system settings.
Federated learning allows distributed devices to collectively train a model without sharing or disclosing the local dataset with a central server. The global model is optimized by training and averaging the model parameters of all local participants. However, the improved privacy of federated learning also introduces challenges including higher computation and communication costs. In particular, federated learning converges slower than centralized training. We propose the server averaging algorithm to accelerate convergence. Sever averaging constructs the shared global model by periodically averaging a set of previous global models. Our experiments indicate that server averaging not only converges faster, to a target accuracy, than federated averaging (FedAvg), but also reduces the computation costs on the client-level through epoch decay.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا