ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hierarchical Self-Attentive Model for Recommending User-Generated Item Lists

343   0   0.0 ( 0 )
 نشر من قبل Yun He
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

User-generated item lists are a popular feature of many different platforms. Examples include lists of books on Goodreads, playlists on Spotify and YouTube, collections of images on Pinterest, and lists of answers on question-answer sites like Zhihu. Recommending item lists is critical for increasing user engagement and connecting users to new items, but many approaches are designed for the item-based recommendation, without careful consideration of the complex relationships between items and lists. Hence, in this paper, we propose a novel user-generated list recommendation model called AttList. Two unique features of AttList are careful modeling of (i) hierarchical user preference, which aggregates items to characterize the list that they belong to, and then aggregates these lists to estimate the user preference, naturally fitting into the hierarchical structure of item lists; and (ii) item and list consistency, through a novel self-attentive aggregation layer designed for capturing the consistency of neighboring items and lists to better model user preference. Through experiments over three real-world datasets reflecting different kinds of user-generated item lists, we find that AttList results in significant improvements in NDCG, Precision@k, and Recall@k versus a suite of state-of-the-art baselines. Furthermore, all code and data are available at https://github.com/heyunh2015/AttList.



قيم البحث

اقرأ أيضاً

Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. T hat is, a single static feature vector is derived to encode her preference without considering the particular characteristics of each candidate item. We argue that this static encoding scheme is difficult to fully capture the users preference. In this paper, we propose a novel context-aware user-item representation learning model for rating prediction, named CARL. Namely, CARL derives a joint representation for a given user-item pair based on their individual latent features and latent feature interactions. Then, CARL adopts Factorization Machines to further model higher-order feature interactions on the basis of the user-item pair for rating prediction. Specifically, two separate learning components are devised in CARL to exploit review data and interaction data respectively: review-based feature learning and interaction-based feature learning. In review-based learning component, with convolution operations and attention mechanism, the relevant features for a user-item pair are extracted by jointly considering their corresponding reviews. However, these features are only review-driven and may not be comprehensive. Hence, interaction-based learning component further extracts complementary features from interaction data alone, also on the basis of user-item pairs. The final rating score is then derived with a dynamic linear fusion mechanism. Experiments on five real-world datasets show that CARL achieves significantly better rating prediction accuracy than existing state-of-the-art alternatives. Also, with attention mechanism, we show that the relevant information in reviews can be highlighted to interpret the rating prediction.
134 - Hansi Zeng , Qingyao Ai 2020
Using reviews to learn user and item representations is important for recommender system. Current review based methods can be divided into two categories: (1) the Convolution Neural Network (CNN) based models that extract n-gram features from user/it em reviews; (2) the Recurrent Neural Network (RNN) based models that learn global contextual representations from reviews for users and items. Despite their success, both CNN and RNN based models in previous studies suffer from their own drawbacks. While CNN based models are weak in modeling long-dependency relation in text, RNN based models are slow in training and inference due to their incapability with parallel computing. To alleviate these problems, we propose a new text encoder module for review modeling in recommendation by combining convolution networks with self-attention networks to model local and global interactions in text together.As different words, sentences, reviews have different importance for modeling user and item representations, we construct review models hierarchically in sentence-level, review-level, and user/item level by encoding words for sentences, encoding sentences for reviews, and encoding reviews for user and item representations. Experiments on Amazon Product Benchmark show that our model can achieve significant better performance comparing to the state-of-the-art review based recommendation models.
Factorization methods for recommender systems tend to represent users as a single latent vector. However, user behavior and interests may change in the context of the recommendations that are presented to the user. For example, in the case of movie r ecommendations, it is usually true that earlier user data is less informative than more recent data. However, it is possible that a certain early movie may become suddenly more relevant in the presence of a popular sequel movie. This is just a single example of a variety of possible dynamically altering user interests in the presence of a potential new recommendation. In this work, we present Attentive Item2vec (AI2V) - a novel attentive version of Item2vec (I2V). AI2V employs a context-target attention mechanism in order to learn and capture different characteristics of user historical behavior (context) with respect to a potential recommended item (target). The attentive context-target mechanism enables a final neural attentive user representation. We demonstrate the effectiveness of AI2V on several datasets, where it is shown to outperform other baselines.
133 - Yitong Meng , Jie Liu , Xiao Yan 2020
When a new user just signs up on a website, we usually have no information about him/her, i.e. no interaction with items, no user profile and no social links with other users. Under such circumstances, we still expect our recommender systems could at tract the users at the first time so that the users decide to stay on the website and become active users. This problem falls into new user cold-start category and it is crucial to the development and even survival of a company. Existing works on user cold-start recommendation either require additional user efforts, e.g. setting up an interview process, or make use of side information [10] such as user demographics, locations, social relations, etc. However, users may not be willing to take the interview and side information on cold-start users is usually not available. Therefore, we consider a pure cold-start scenario where neither interaction nor side information is available and no user effort is required. Studying this setting is also important for the initialization of other cold-start solutions, such as initializing the first few questions of an interview.
173 - Yun He , Yin Zhang , Weiwen Liu 2019
User-generated item lists are popular on many platforms. Examples include video-based playlists on YouTube, image-based lists (orboards) on Pinterest, book-based lists on Goodreads, and answer-based lists on question-answer forums like Zhihu. As user s create these lists, a common challenge is in identifying what items to curate next. Some lists are organized around particular genres or topics, while others are seemingly incoherent, reflecting individual preferences for what items belong together. Furthermore, this heterogeneity in item consistency may vary from platform to platform, and from sub-community to sub-community. Hence, this paper proposes a generalizable approach for user-generated item list continuation. Complementary to methods that exploit specific content patterns (e.g., as in song-based playlists that rely on audio features), the proposed approach models the consistency of item lists based on human curation patterns, and so can be deployed across a wide range of varying item types (e.g., videos, images, books). A key contribution is in intelligently combining two preference models via a novel consistency-aware gating network - a general user preference model that captures a users overall interests, and a current preference priority model that captures a users current (as of the most recent item) interests. In this way, the proposed consistency-aware recommender can dynamically adapt as user preferences evolve. Evaluation over four datasets(of songs, books, and answers) confirms these observations and demonstrates the effectiveness of the proposed model versus state-of-the-art alternatives. Further, all code and data are available at https://github.com/heyunh2015/ListContinuation_WSDM2020.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا