ترغب بنشر مسار تعليمي؟ اضغط هنا

Attentive Item2Vec: Neural Attentive User Representations

64   0   0.0 ( 0 )
 نشر من قبل Avi Caciularu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Factorization methods for recommender systems tend to represent users as a single latent vector. However, user behavior and interests may change in the context of the recommendations that are presented to the user. For example, in the case of movie recommendations, it is usually true that earlier user data is less informative than more recent data. However, it is possible that a certain early movie may become suddenly more relevant in the presence of a popular sequel movie. This is just a single example of a variety of possible dynamically altering user interests in the presence of a potential new recommendation. In this work, we present Attentive Item2vec (AI2V) - a novel attentive version of Item2vec (I2V). AI2V employs a context-target attention mechanism in order to learn and capture different characteristics of user historical behavior (context) with respect to a potential recommended item (target). The attentive context-target mechanism enables a final neural attentive user representation. We demonstrate the effectiveness of AI2V on several datasets, where it is shown to outperform other baselines.



قيم البحث

اقرأ أيضاً

Modern deep neural networks (DNNs) have greatly facilitated the development of sequential recommender systems by achieving state-of-the-art recommendation performance on various sequential recommendation tasks. Given a sequence of interacted items, e xisting DNN-based sequential recommenders commonly embed each item into a unique vector to support subsequent computations of the user interest. However, due to the potentially large number of items, the over-parameterised item embedding matrix of a sequential recommender has become a memory bottleneck for efficient deployment in resource-constrained environments, e.g., smartphones and other edge devices. Furthermore, we observe that the widely-used multi-head self-attention, though being effective in modelling sequential dependencies among items, heavily relies on redundant attention units to fully capture both global and local item-item transition patterns within a sequence. In this paper, we introduce a novel lightweight self-attentive network (LSAN) for sequential recommendation. To aggressively compress the original embedding matrix, LSAN leverages the notion of compositional embeddings, where each item embedding is composed by merging a group of selected base embedding vectors derived from substantially smaller embedding matrices. Meanwhile, to account for the intrinsic dynamics of each item, we further propose a temporal context-aware embedding composition scheme. Besides, we develop an innovative twin-attention network that alleviates the redundancy of the traditional multi-head self-attention while retaining full capacity for capturing long- and short-term (i.e., global and local) item dependencies. Comprehensive experiments demonstrate that LSAN significantly advances the accuracy and memory efficiency of existing sequential recommenders.
An important problem in multiview representation learning is finding the optimal combination of views with respect to the specific task at hand. To this end, we introduce NAM: a Neural Attentive Multiview machine that learns multiview item representa tions and similarity by employing a novel attention mechanism. NAM harnesses multiple information sources and automatically quantifies their relevancy with respect to a supervised task. Finally, a very practical advantage of NAM is its robustness to the case of dataset with missing views. We demonstrate the effectiveness of NAM for the task of movies and app recommendations. Our evaluations indicate that NAM outperforms single view models as well as alternative multiview methods on item recommendations tasks, including cold-start scenarios.
342 - Yun He , Jianling Wang , Wei Niu 2019
User-generated item lists are a popular feature of many different platforms. Examples include lists of books on Goodreads, playlists on Spotify and YouTube, collections of images on Pinterest, and lists of answers on question-answer sites like Zhihu. Recommending item lists is critical for increasing user engagement and connecting users to new items, but many approaches are designed for the item-based recommendation, without careful consideration of the complex relationships between items and lists. Hence, in this paper, we propose a novel user-generated list recommendation model called AttList. Two unique features of AttList are careful modeling of (i) hierarchical user preference, which aggregates items to characterize the list that they belong to, and then aggregates these lists to estimate the user preference, naturally fitting into the hierarchical structure of item lists; and (ii) item and list consistency, through a novel self-attentive aggregation layer designed for capturing the consistency of neighboring items and lists to better model user preference. Through experiments over three real-world datasets reflecting different kinds of user-generated item lists, we find that AttList results in significant improvements in NDCG, Precision@k, and Recall@k versus a suite of state-of-the-art baselines. Furthermore, all code and data are available at https://github.com/heyunh2015/AttList.
Recently, deep learning has made significant progress in the task of sequential recommendation. Existing neural sequential recommenders typically adopt a generative way trained with Maximum Likelihood Estimation (MLE). When context information (calle d factor) is involved, it is difficult to analyze when and how each individual factor would affect the final recommendation performance. For this purpose, we take a new perspective and introduce adversarial learning to sequential recommendation. In this paper, we present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation. Specifically, our proposed MFGAN has two kinds of modules: a Transformer-based generator taking user behavior sequences as input to recommend the possible next items, and multiple factor-specific discriminators to evaluate the generated sub-sequence from the perspectives of different factors. To learn the parameters, we adopt the classic policy gradient method, and utilize the reward signal of discriminators for guiding the learning of the generator. Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our proposed model over the state-of-the-art methods, in terms of effectiveness and interpretability.
Neural Processes (NPs) (Garnelo et al 2018a;b) approach regression by learning to map a context set of observed input-output pairs to a distribution over regression functions. Each function models the distribution of the output given an input, condit ioned on the context. NPs have the benefit of fitting observed data efficiently with linear complexity in the number of context input-output pairs, and can learn a wide family of conditional distributions; they learn predictive distributions conditioned on context sets of arbitrary size. Nonetheless, we show that NPs suffer a fundamental drawback of underfitting, giving inaccurate predictions at the inputs of the observed data they condition on. We address this issue by incorporating attention into NPs, allowing each input location to attend to the relevant context points for the prediction. We show that this greatly improves the accuracy of predictions, results in noticeably faster training, and expands the range of functions that can be modelled.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا