ترغب بنشر مسار تعليمي؟ اضغط هنا

A Context-Aware User-Item Representation Learning for Item Recommendation

144   0   0.0 ( 0 )
 نشر من قبل Cong Quan
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. That is, a single static feature vector is derived to encode her preference without considering the particular characteristics of each candidate item. We argue that this static encoding scheme is difficult to fully capture the users preference. In this paper, we propose a novel context-aware user-item representation learning model for rating prediction, named CARL. Namely, CARL derives a joint representation for a given user-item pair based on their individual latent features and latent feature interactions. Then, CARL adopts Factorization Machines to further model higher-order feature interactions on the basis of the user-item pair for rating prediction. Specifically, two separate learning components are devised in CARL to exploit review data and interaction data respectively: review-based feature learning and interaction-based feature learning. In review-based learning component, with convolution operations and attention mechanism, the relevant features for a user-item pair are extracted by jointly considering their corresponding reviews. However, these features are only review-driven and may not be comprehensive. Hence, interaction-based learning component further extracts complementary features from interaction data alone, also on the basis of user-item pairs. The final rating score is then derived with a dynamic linear fusion mechanism. Experiments on five real-world datasets show that CARL achieves significantly better rating prediction accuracy than existing state-of-the-art alternatives. Also, with attention mechanism, we show that the relevant information in reviews can be highlighted to interpret the rating prediction.



قيم البحث

اقرأ أيضاً

Next basket recommendation, which aims to predict the next a few items that a user most probably purchases given his historical transactions, plays a vital role in market basket analysis. From the viewpoint of item, an item could be purchased by diff erent users together with different items, for different reasons. Therefore, an ideal recommender system should represent an item considering its transaction contexts. Existing state-of-the-art deep learning methods usually adopt the static item representations, which are invariant among all of the transactions and thus cannot achieve the full potentials of deep learning. Inspired by the pre-trained representations of BERT in natural language processing, we propose to conduct context-aware item representation for next basket recommendation, called Item Encoder Representations from Transformers (IERT). In the offline phase, IERT pre-trains deep item representations conditioning on their transaction contexts. In the online recommendation phase, the pre-trained model is further fine-tuned with an additional output layer. The output contextualized item embeddings are used to capture users sequential behaviors and general tastes to conduct recommendation. Experimental results on the Ta-Feng data set show that IERT outperforms the state-of-the-art baseline methods, which demonstrated the effectiveness of IERT in next basket representation.
Session-based recommendation aims at predicting the next item given a sequence of previous items consumed in the session, e.g., on e-commerce or multimedia streaming services. Specifically, session data exhibits some unique characteristics, i.e., ses sion consistency and sequential dependency over items within the session, repeated item consumption, and session timeliness. In this paper, we propose simple-yet-effective linear models for considering the holistic aspects of the sessions. The comprehensive nature of our models helps improve the quality of session-based recommendation. More importantly, it provides a generalized framework for reflecting different perspectives of session data. Furthermore, since our models can be solved by closed-form solutions, they are highly scalable. Experimental results demonstrate that the proposed linear models show competitive or state-of-the-art performance in various metrics on several real-world datasets.
133 - Yitong Meng , Jie Liu , Xiao Yan 2020
When a new user just signs up on a website, we usually have no information about him/her, i.e. no interaction with items, no user profile and no social links with other users. Under such circumstances, we still expect our recommender systems could at tract the users at the first time so that the users decide to stay on the website and become active users. This problem falls into new user cold-start category and it is crucial to the development and even survival of a company. Existing works on user cold-start recommendation either require additional user efforts, e.g. setting up an interview process, or make use of side information [10] such as user demographics, locations, social relations, etc. However, users may not be willing to take the interview and side information on cold-start users is usually not available. Therefore, we consider a pure cold-start scenario where neither interaction nor side information is available and no user effort is required. Studying this setting is also important for the initialization of other cold-start solutions, such as initializing the first few questions of an interview.
162 - Feng Liu , Ruiming Tang , Xutao Li 2018
Recommendation is crucial in both academia and industry, and various techniques are proposed such as content-based collaborative filtering, matrix factorization, logistic regression, factorization machines, neural networks and multi-armed bandits. Ho wever, most of the previous studies suffer from two limitations: (1) considering the recommendation as a static procedure and ignoring the dynamic interactive nature between users and the recommender systems, (2) focusing on the immediate feedback of recommended items and neglecting the long-term rewards. To address the two limitations, in this paper we propose a novel recommendation framework based on deep reinforcement learning, called DRR. The DRR framework treats recommendation as a sequential decision making procedure and adopts an Actor-Critic reinforcement learning scheme to model the interactions between the users and recommender systems, which can consider both the dynamic adaptation and long-term rewards. Furthermore, a state representation module is incorporated into DRR, which can explicitly capture the interactions between items and users. Three instantiation structures are developed. Extensive experiments on four real-world datasets are conducted under both the offline and online evaluation settings. The experimental results demonstrate the proposed DRR method indeed outperforms the state-of-the-art competitors.
102 - Kai Zhang , Hao Qian , Qi Liu 2021
Recent studies in recommender systems have managed to achieve significantly improved performance by leveraging reviews for rating prediction. However, despite being extensively studied, these methods still suffer from some limitations. First, previou s studies either encode the document or extract latent sentiment via neural networks, which are difficult to interpret the sentiment of reviewers intuitively. Second, they neglect the personalized interaction of reviews with user/item, i.e., each review has different contributions when modeling the sentiment preference of user/item. To remedy these issues, we propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation. Specifically, we first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review. Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels. Finally, we design a rating prediction task that contains a rating learner with an interactive and fusion module to fuse the identity (i.e., user and item ID) and each review representation so that various interactive features can synergistically influence the final rating score. Experimental results on five real-world datasets demonstrate that the proposed model is superior to state-of-the-art models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا