ﻻ يوجد ملخص باللغة العربية
Using reviews to learn user and item representations is important for recommender system. Current review based methods can be divided into two categories: (1) the Convolution Neural Network (CNN) based models that extract n-gram features from user/item reviews; (2) the Recurrent Neural Network (RNN) based models that learn global contextual representations from reviews for users and items. Despite their success, both CNN and RNN based models in previous studies suffer from their own drawbacks. While CNN based models are weak in modeling long-dependency relation in text, RNN based models are slow in training and inference due to their incapability with parallel computing. To alleviate these problems, we propose a new text encoder module for review modeling in recommendation by combining convolution networks with self-attention networks to model local and global interactions in text together.As different words, sentences, reviews have different importance for modeling user and item representations, we construct review models hierarchically in sentence-level, review-level, and user/item level by encoding words for sentences, encoding sentences for reviews, and encoding reviews for user and item representations. Experiments on Amazon Product Benchmark show that our model can achieve significant better performance comparing to the state-of-the-art review based recommendation models.
User and item reviews are valuable for the construction of recommender systems. In general, existing review-based methods for recommendation can be broadly categorized into two groups: the siamese models that build static user and item representation
Recently, deep learning has made significant progress in the task of sequential recommendation. Existing neural sequential recommenders typically adopt a generative way trained with Maximum Likelihood Estimation (MLE). When context information (calle
Modern deep neural networks (DNNs) have greatly facilitated the development of sequential recommender systems by achieving state-of-the-art recommendation performance on various sequential recommendation tasks. Given a sequence of interacted items, e
Recently, Graph Convolution Network (GCN) based methods have achieved outstanding performance for recommendation. These methods embed users and items in Euclidean space, and perform graph convolution on user-item interaction graphs. However, real-wor
User-generated item lists are a popular feature of many different platforms. Examples include lists of books on Goodreads, playlists on Spotify and YouTube, collections of images on Pinterest, and lists of answers on question-answer sites like Zhihu.