ترغب بنشر مسار تعليمي؟ اضغط هنا

Rigidity of MHD equilibria to smooth incompressible ideal motion near resonant surfaces

172   0   0.0 ( 0 )
 نشر من قبل David Pfefferl\\'e
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In ideal MHD, the magnetic flux is advected by the plasma motion, freezing flux-surfaces into the flow. An MHD equilibrium is reached when the flow relaxes and force balance is achieved. We ask what classes of MHD equilibria can be accessed from a given initial state via smooth incompressible ideal motion. It is found that certain boundary displacements are formally not supported. This follows from yet another investigation of the Hahm--Kulsrud--Taylor (HKT) problem, which highlights the resonant behaviour near a rational layer formed by a set of degenerate critical points in the flux-function. When trying to retain the mirror symmetry of the flux-function with respect to the resonant layer, the vector field that generates the volume-preserving diffeomorphism vanishes at the identity to all order in the time-like path parameter.



قيم البحث

اقرأ أيضاً

223 - Chengchun Hao 2016
For the free boundary problem of the plasma-vacuum interface to three-dimensional ideal incompressible magnetohydrodynamics (MHD), the a priori estimates of smooth solutions are proved in Sobolev norms by adopting a geometrical point of view and some quantities such as the second fundamental form and the velocity of the free interface are estimated. In the vacuum region, the magnetic fields are described by the div-curl system of pre-Maxwell dynamics, while at the interface the total pressure is continuous and the magnetic fields are tangent to the interface, but we do not need any restrictions on the size of the magnetic fields on the free interface. We introduce the virtual particle endowed with a virtual velocity field in vacuum to reformulate the problem to a fixed boundary problem under the Lagrangian coordinates. The $L^2$-norms of any order covariant derivatives of the magnetic fields both in vacuum and on the boundaries are bounded in terms of initial data and the second fundamental forms of the free interface and the rigid wall. The estimates of the curl of the electric fields in vacuum are also obtained, which are also indispensable in elliptic estimates.
85 - Chengchun Hao 2016
For the free boundary problem of the plasma-vacuum interface to ideal incompressible magnetohydrodynamics (MHD) in two-dimensional space, the a priori estimates of solutions are proved in Sobolev norms by adopting a geometrical point of view. In the vacuum region, the magnetic field is described by the div-curl system of pre-Maxwell dynamics, while at the interface the total pressure is continuous and the magnetic field is tangent to the boundary. We prove that the $L^2$ norms of any order covariant derivatives of the magnetic field in vacuum and on the boundaries are bounded in terms of initial data and the second fundamental forms of the free interface and the rigid wall.
160 - Chengchun Hao , Tao Luo 2018
In the present paper, we show the ill-posedness of the free boundary problem of the incompressible ideal magnetohydrodynamics (MHD) equations in two spatial dimensions for any positive vacuum permeability $mu_0$, in Sobolev spaces. The analysis is uniform for any $mu_0>0$.
70 - J. W. Burby , N. Kallinikos , 2020
The structure of static MHD equilibria that admit continuous families of Euclidean symmetries is well understood. Such field configurations are governed by the classical Grad-Shafranov equation, which is a single elliptic PDE in two space dimensions. By revealing a hidden symmetry, we show that in fact all smooth solutions of the equilibrium equations with non-vanishing pressure gradients away from the magnetic axis satisfy a generalization of the Grad-Shafranov equation. In contrast to solutions of the classical Grad-Shafranov equation, solutions of he generalized equation are not automatically equilibria, but instead only satisfy force balance averaged over the one-parameter hidden symmetry. We then explain how the generalized Grad-Shafranov equation can be used to reformulate the problem of finding exact three-dimensional smooth solutions of the equilibrium equations as finding an optimal volume-preserving symmetry.
The CFETR baseline scenario is based on a H-mode equilibrium with high pedestal and highly peaked edge bootstrap current, along with strong reverse shear in safety factor profile. The stability of ideal MHD modes for the CFETR baseline scenario has b een evaluated using NIMROD and AEGIS codes. The toroidal mode numbers (n=1-10) are considered in this analysis for different positions of perfectly conducting wall in order to estimate the ideal wall effect on the stability of ideal MHD modes for physics and engineering designs of CFETR. Although, the modes (n=1-10) are found to be unstable in ideal MHD, the structure of all modes is edge localized. Growth rates of all modes are found to be increasing initially with wall position before they reach ideal wall saturation limit (no wall limit). No global core modes are found to be dominantly unstable in our analysis. The design of $q_{min}>2$ and strong reverse shear in $q$ profile is expected to prevent the excitation of global modes. Therefore, this baseline scenario is considered to be suitable for supporting long time steady state discharge in context of ideal MHD physics, if ELMs could be controlled.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا