ﻻ يوجد ملخص باللغة العربية
In the present paper, we show the ill-posedness of the free boundary problem of the incompressible ideal magnetohydrodynamics (MHD) equations in two spatial dimensions for any positive vacuum permeability $mu_0$, in Sobolev spaces. The analysis is uniform for any $mu_0>0$.
We study the well-posedness theory for the linearized free boundary problem of incompressible ideal magnetohydrodynamics equations in a bounded domain. We express the magnetic field in terms of the velocity field and the deformation tensors in the La
For the free boundary problem of the plasma-vacuum interface to three-dimensional ideal incompressible magnetohydrodynamics (MHD), the a priori estimates of smooth solutions are proved in Sobolev norms by adopting a geometrical point of view and some
We consider 3D free-boundary compressible elastodynamic system under the Rayleigh-Taylor sign condition. It describes the motion of an isentropic inviscid elastic medium with moving boundary. The deformation tensor satisfies the neo-Hookean linear el
For the free boundary problem of the plasma-vacuum interface to ideal incompressible magnetohydrodynamics (MHD) in two-dimensional space, the a priori estimates of solutions are proved in Sobolev norms by adopting a geometrical point of view. In the
In this paper, we prove the a priori estimates in Sobolev spaces for the free-boundary compressible inviscid magnetohydrodynamics equations with magnetic diffusion under the Rayleigh-Taylor physical sign condition. Our energy estimates are uniform in