ترغب بنشر مسار تعليمي؟ اضغط هنا

On the motion of free interface in ideal incompressible MHD

224   0   0.0 ( 0 )
 نشر من قبل Chengchun Hao Dr.
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Chengchun Hao




اسأل ChatGPT حول البحث

For the free boundary problem of the plasma-vacuum interface to three-dimensional ideal incompressible magnetohydrodynamics (MHD), the a priori estimates of smooth solutions are proved in Sobolev norms by adopting a geometrical point of view and some quantities such as the second fundamental form and the velocity of the free interface are estimated. In the vacuum region, the magnetic fields are described by the div-curl system of pre-Maxwell dynamics, while at the interface the total pressure is continuous and the magnetic fields are tangent to the interface, but we do not need any restrictions on the size of the magnetic fields on the free interface. We introduce the virtual particle endowed with a virtual velocity field in vacuum to reformulate the problem to a fixed boundary problem under the Lagrangian coordinates. The $L^2$-norms of any order covariant derivatives of the magnetic fields both in vacuum and on the boundaries are bounded in terms of initial data and the second fundamental forms of the free interface and the rigid wall. The estimates of the curl of the electric fields in vacuum are also obtained, which are also indispensable in elliptic estimates.



قيم البحث

اقرأ أيضاً

85 - Chengchun Hao 2016
For the free boundary problem of the plasma-vacuum interface to ideal incompressible magnetohydrodynamics (MHD) in two-dimensional space, the a priori estimates of solutions are proved in Sobolev norms by adopting a geometrical point of view. In the vacuum region, the magnetic field is described by the div-curl system of pre-Maxwell dynamics, while at the interface the total pressure is continuous and the magnetic field is tangent to the boundary. We prove that the $L^2$ norms of any order covariant derivatives of the magnetic field in vacuum and on the boundaries are bounded in terms of initial data and the second fundamental forms of the free interface and the rigid wall.
160 - Chengchun Hao , Tao Luo 2018
In the present paper, we show the ill-posedness of the free boundary problem of the incompressible ideal magnetohydrodynamics (MHD) equations in two spatial dimensions for any positive vacuum permeability $mu_0$, in Sobolev spaces. The analysis is uniform for any $mu_0>0$.
In ideal MHD, the magnetic flux is advected by the plasma motion, freezing flux-surfaces into the flow. An MHD equilibrium is reached when the flow relaxes and force balance is achieved. We ask what classes of MHD equilibria can be accessed from a gi ven initial state via smooth incompressible ideal motion. It is found that certain boundary displacements are formally not supported. This follows from yet another investigation of the Hahm--Kulsrud--Taylor (HKT) problem, which highlights the resonant behaviour near a rational layer formed by a set of degenerate critical points in the flux-function. When trying to retain the mirror symmetry of the flux-function with respect to the resonant layer, the vector field that generates the volume-preserving diffeomorphism vanishes at the identity to all order in the time-like path parameter.
174 - Chengchun Hao , Tao Luo 2019
We study the well-posedness theory for the linearized free boundary problem of incompressible ideal magnetohydrodynamics equations in a bounded domain. We express the magnetic field in terms of the velocity field and the deformation tensors in the La grangian coordinates, and substitute the magnetic field into the momentum equation to get an equation of the velocity in which the initial magnetic field serves only as a parameter. Then, we linearize this equation with respect to the position vector field whose time derivative is the velocity, and obtain the local-in-time well-posedness of the solution by using energy estimates of the tangential derivatives and the curl with the help of Lie derivatives and the smooth-out approximation.
101 - Junyan Zhang 2019
In this paper, we prove the a priori estimates in Sobolev spaces for the free-boundary compressible inviscid magnetohydrodynamics equations with magnetic diffusion under the Rayleigh-Taylor physical sign condition. Our energy estimates are uniform in the sound speed. As a result, we can prove the convergence of solutions of the free-boundary compressible resistive MHD equations to the solution of the free-boundary incompressible resistive MHD equations, i.e., the incompressible limit. The key observation is that the magnetic diffusion together with elliptic estimates directly controls the Lorentz force, magnetic field and pressure wave simultaneously.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا