ﻻ يوجد ملخص باللغة العربية
For the free boundary problem of the plasma-vacuum interface to ideal incompressible magnetohydrodynamics (MHD) in two-dimensional space, the a priori estimates of solutions are proved in Sobolev norms by adopting a geometrical point of view. In the vacuum region, the magnetic field is described by the div-curl system of pre-Maxwell dynamics, while at the interface the total pressure is continuous and the magnetic field is tangent to the boundary. We prove that the $L^2$ norms of any order covariant derivatives of the magnetic field in vacuum and on the boundaries are bounded in terms of initial data and the second fundamental forms of the free interface and the rigid wall.
For the free boundary problem of the plasma-vacuum interface to three-dimensional ideal incompressible magnetohydrodynamics (MHD), the a priori estimates of smooth solutions are proved in Sobolev norms by adopting a geometrical point of view and some
In the present paper, we show the ill-posedness of the free boundary problem of the incompressible ideal magnetohydrodynamics (MHD) equations in two spatial dimensions for any positive vacuum permeability $mu_0$, in Sobolev spaces. The analysis is uniform for any $mu_0>0$.
In ideal MHD, the magnetic flux is advected by the plasma motion, freezing flux-surfaces into the flow. An MHD equilibrium is reached when the flow relaxes and force balance is achieved. We ask what classes of MHD equilibria can be accessed from a gi
We study the well-posedness theory for the linearized free boundary problem of incompressible ideal magnetohydrodynamics equations in a bounded domain. We express the magnetic field in terms of the velocity field and the deformation tensors in the La
In this paper, we prove the a priori estimates in Sobolev spaces for the free-boundary compressible inviscid magnetohydrodynamics equations with magnetic diffusion under the Rayleigh-Taylor physical sign condition. Our energy estimates are uniform in