ﻻ يوجد ملخص باللغة العربية
The CFETR baseline scenario is based on a H-mode equilibrium with high pedestal and highly peaked edge bootstrap current, along with strong reverse shear in safety factor profile. The stability of ideal MHD modes for the CFETR baseline scenario has been evaluated using NIMROD and AEGIS codes. The toroidal mode numbers (n=1-10) are considered in this analysis for different positions of perfectly conducting wall in order to estimate the ideal wall effect on the stability of ideal MHD modes for physics and engineering designs of CFETR. Although, the modes (n=1-10) are found to be unstable in ideal MHD, the structure of all modes is edge localized. Growth rates of all modes are found to be increasing initially with wall position before they reach ideal wall saturation limit (no wall limit). No global core modes are found to be dominantly unstable in our analysis. The design of $q_{min}>2$ and strong reverse shear in $q$ profile is expected to prevent the excitation of global modes. Therefore, this baseline scenario is considered to be suitable for supporting long time steady state discharge in context of ideal MHD physics, if ELMs could be controlled.
This article reports an evaluation on the linear ideal magnetohydrodynamic (MHD) stability of the China Fusion Engineering Test Reactor (CFETR) baseline scenario for various first-wall locations. The initial-value code NIMROD and eigen-value code AEG
The China Fusion Engineering Test Reactor (CFETR) and the Huazhong Field Reversed Configuration (HFRC), currently both under intensive physical and engineering designs in China, are the two major projects representative of the low-density steady-stat
The stability of the ideal magnetohydrodynamic (MHD) interchange mode at marginal conditions is studied. A sufficiently strong constant magnetic field component transverse to the direction of mode symmetry provides the marginality conditions. A syste
Different variants of hybrid kinetic-fluid models are considered for describing the interaction of a bulk fluid plasma obeying MHD and an energetic component obeying a kinetic theory. Upon using the Vlasov kinetic theory for energetic particles, two
In ideal MHD, the magnetic flux is advected by the plasma motion, freezing flux-surfaces into the flow. An MHD equilibrium is reached when the flow relaxes and force balance is achieved. We ask what classes of MHD equilibria can be accessed from a gi