ترغب بنشر مسار تعليمي؟ اضغط هنا

HHHFL: Hierarchical Heterogeneous Horizontal Federated Learning for Electroencephalography

209   0   0.0 ( 0 )
 نشر من قبل Ce Ju
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Electroencephalography (EEG) classification techniques have been widely studied for human behavior and emotion recognition tasks. But it is still a challenging issue since the data may vary from subject to subject, may change over time for the same subject, and maybe heterogeneous. Recent years, increasing privacy-preserving demands poses new challenges to this task. The data heterogeneity, as well as the privacy constraint of the EEG data, is not concerned in previous studies. To fill this gap, in this paper, we propose a heterogeneous federated learning approach to train machine learning models over heterogeneous EEG data, while preserving the data privacy of each party. To verify the effectiveness of our approach, we conduct experiments on a real-world EEG dataset, consisting of heterogeneous data collected from diverse devices. Our approach achieves consistent performance improvement on every task.

قيم البحث

اقرأ أيضاً

Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model, without the need to share their local data. It is a promising solution for telemonitoring systems that demand inten sive data collection, for detection, classification, and prediction of future events, from different locations while maintaining a strict privacy constraint. Due to privacy concerns and critical communication bottlenecks, it can become impractical to send the FL updated models to a centralized server. Thus, this paper studies the potential of hierarchical FL in IoT heterogeneous systems and propose an optimized solution for user assignment and resource allocation on multiple edge nodes. In particular, this work focuses on a generic class of machine learning models that are trained using gradient-descent-based schemes while considering the practical constraints of non-uniformly distributed data across different users. We evaluate the proposed system using two real-world datasets, and we show that it outperforms state-of-the-art FL solutions. In particular, our numerical results highlight the effectiveness of our approach and its ability to provide 4-6% increase in the classification accuracy, with respect to hierarchical FL schemes that consider distance-based user assignment. Furthermore, the proposed approach could significantly accelerate FL training and reduce communication overhead by providing 75-85% reduction in the communication rounds between edge nodes and the centralized server, for the same model accuracy.
Federated learning learns from scattered data by fusing collaborative models from local nodes. However, due to chaotic information distribution, the model fusion may suffer from structural misalignment with regard to unmatched parameters. In this wor k, we propose a novel federated learning framework to resolve this issue by establishing a firm structure-information alignment across collaborative models. Specifically, we design a feature-oriented regulation method ({$Psi$-Net}) to ensure explicit feature information allocation in different neural network structures. Applying this regulating method to collaborative models, matchable structures with similar feature information can be initialized at the very early training stage. During the federated learning process under either IID or non-IID scenarios, dedicated collaboration schemes further guarantee ordered information distribution with definite structure matching, so as the comprehensive model alignment. Eventually, this framework effectively enhances the federated learning applicability to extensive heterogeneous settings, while providing excellent convergence speed, accuracy, and computation/communication efficiency.
109 - Zichen Ma , Yu Lu , Zihan Lu 2021
Federated learning involves training machine learning models over devices or data silos, such as edge processors or data warehouses, while keeping the data local. Training in heterogeneous and potentially massive networks introduces bias into the sys tem, which is originated from the non-IID data and the low participation rate in reality. In this paper, we propose Elastic Federated Learning (EFL), an unbiased algorithm to tackle the heterogeneity in the system, which makes the most informative parameters less volatile during training, and utilizes the incomplete local updates. It is an efficient and effective algorithm that compresses both upstream and downstream communications. Theoretically, the algorithm has convergence guarantee when training on the non-IID data at the low participation rate. Empirical experiments corroborate the competitive performance of EFL framework on the robustness and the efficiency.
In federated learning (FL), fair and accurate measurement of the contribution of each federated participant is of great significance. The level of contribution not only provides a rational metric for distributing financial benefits among federated pa rticipants, but also helps to discover malicious participants that try to poison the FL framework. Previous methods for contribution measurement were based on enumeration over possible combination of federated participants. Their computation costs increase drastically with the number of participants or feature dimensions, making them inapplicable in practical situations. In this paper an efficient method is proposed to evaluate the contributions of federated participants. This paper focuses on the horizontal FL framework, where client servers calculate parameter gradients over their local data, and upload the gradients to the central server. Before aggregating the client gradients, the central server train a data value estimator of the gradients using reinforcement learning techniques. As shown by experimental results, the proposed method consistently outperforms the conventional leave-one-out method in terms of valuation authenticity as well as time complexity.
Federated learning aims to protect users privacy while performing data analysis from different participants. However, it is challenging to guarantee the training efficiency on heterogeneous systems due to the various computational capabilities and co mmunication bottlenecks. In this work, we propose FedSkel to enable computation-efficient and communication-efficient federated learning on edge devices by only updating the models essential parts, named skeleton networks. FedSkel is evaluated on real edge devices with imbalanced datasets. Experimental results show that it could achieve up to 5.52$times$ speedups for CONV layers back-propagation, 1.82$times$ speedups for the whole training process, and reduce 64.8% communication cost, with negligible accuracy loss.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا