ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Heterogeneous Clients with Elastic Federated Learning

110   0   0.0 ( 0 )
 نشر من قبل Zichen Ma
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning involves training machine learning models over devices or data silos, such as edge processors or data warehouses, while keeping the data local. Training in heterogeneous and potentially massive networks introduces bias into the system, which is originated from the non-IID data and the low participation rate in reality. In this paper, we propose Elastic Federated Learning (EFL), an unbiased algorithm to tackle the heterogeneity in the system, which makes the most informative parameters less volatile during training, and utilizes the incomplete local updates. It is an efficient and effective algorithm that compresses both upstream and downstream communications. Theoretically, the algorithm has convergence guarantee when training on the non-IID data at the low participation rate. Empirical experiments corroborate the competitive performance of EFL framework on the robustness and the efficiency.

قيم البحث

اقرأ أيضاً

Personalized federated learning (FL) aims to train model(s) that can perform well for individual clients that are highly data and system heterogeneous. Most work in personalized FL, however, assumes using the same model architecture at all clients an d increases the communication cost by sending/receiving models. This may not be feasible for realistic scenarios of FL. In practice, clients have highly heterogeneous system-capabilities and limited communication resources. In our work, we propose a personalized FL framework, PerFed-CKT, where clients can use heterogeneous model architectures and do not directly communicate their model parameters. PerFed-CKT uses clustered co-distillation, where clients use logits to transfer their knowledge to other clients that have similar data-distributions. We theoretically show the convergence and generalization properties of PerFed-CKT and empirically show that PerFed-CKT achieves high test accuracy with several orders of magnitude lower communication cost compared to the state-of-the-art personalized FL schemes.
Federated learning, as a distributed learning that conducts the training on the local devices without accessing to the training data, is vulnerable to dirty-label data poisoning adversarial attacks. We claim that the federated learning model has to a void those kind of adversarial attacks through filtering out the clients that manipulate the local data. We propose a dynamic federated learning model that dynamically discards those adversarial clients, which allows to prevent the corruption of the global learning model. We evaluate the dynamic discarding of adversarial clients deploying a deep learning classification model in a federated learning setting, and using the EMNIST Digits and Fashion MNIST image classification datasets. Likewise, we analyse the capacity of detecting clients with poor data distribution and reducing the number of rounds of learning by selecting the clients to aggregate. The results show that the dynamic selection of the clients to aggregate enhances the performance of the global learning model, discards the adversarial and poor clients and reduces the rounds of learning.
As artificial intelligence (AI)-empowered applications become widespread, there is growing awareness and concern for user privacy and data confidentiality. This has contributed to the popularity of federated learning (FL). FL applications often face data distribution and device capability heterogeneity across data owners. This has stimulated the rapid development of Personalized FL (PFL). In this paper, we complement existing surveys, which largely focus on the methods and applications of FL, with a review of recent advances in PFL. We discuss hurdles to PFL under the current FL settings, and present a unique taxonomy dividing PFL techniques into data-based and model-based approaches. We highlight their key ideas, and envision promising future trajectories of research towards new PFL architectural design, realistic PFL benchmarking, and trustworthy PFL approaches.
Federated Learning (FL), arising as a novel secure learning paradigm, has received notable attention from the public. In each round of synchronous FL training, only a fraction of available clients are chosen to participate and the selection decision might have a significant effect on the training efficiency, as well as the final model performance. In this paper, we investigate the client selection problem under a volatile context, in which the local training of heterogeneous clients is likely to fail due to various kinds of reasons and in different levels of frequency. Intuitively, too much training failure might potentially reduce the training efficiency, while too much selection on clients with greater stability might introduce bias, and thereby result in degradation of the training effectiveness. To tackle this tradeoff, we in this paper formulate the client selection problem under joint consideration of effective participation and fairness. Further, we propose E3CS, a stochastic client selection scheme on the basis of an adversarial bandit solution, and we further corroborate its effectiveness by conducting real data-based experiments. According to the experimental results, our proposed selection scheme is able to achieve up to 2x faster convergence to a fixed model accuracy while maintaining the same level of final model accuracy, in comparison to the vanilla selection scheme in FL.
Federated learning learns from scattered data by fusing collaborative models from local nodes. However, due to chaotic information distribution, the model fusion may suffer from structural misalignment with regard to unmatched parameters. In this wor k, we propose a novel federated learning framework to resolve this issue by establishing a firm structure-information alignment across collaborative models. Specifically, we design a feature-oriented regulation method ({$Psi$-Net}) to ensure explicit feature information allocation in different neural network structures. Applying this regulating method to collaborative models, matchable structures with similar feature information can be initialized at the very early training stage. During the federated learning process under either IID or non-IID scenarios, dedicated collaboration schemes further guarantee ordered information distribution with definite structure matching, so as the comprehensive model alignment. Eventually, this framework effectively enhances the federated learning applicability to extensive heterogeneous settings, while providing excellent convergence speed, accuracy, and computation/communication efficiency.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا