ترغب بنشر مسار تعليمي؟ اضغط هنا

Communication-Efficient Hierarchical Federated Learning for IoT Heterogeneous Systems with Imbalanced Data

293   0   0.0 ( 0 )
 نشر من قبل Alaa Awad Abdellatif
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model, without the need to share their local data. It is a promising solution for telemonitoring systems that demand intensive data collection, for detection, classification, and prediction of future events, from different locations while maintaining a strict privacy constraint. Due to privacy concerns and critical communication bottlenecks, it can become impractical to send the FL updated models to a centralized server. Thus, this paper studies the potential of hierarchical FL in IoT heterogeneous systems and propose an optimized solution for user assignment and resource allocation on multiple edge nodes. In particular, this work focuses on a generic class of machine learning models that are trained using gradient-descent-based schemes while considering the practical constraints of non-uniformly distributed data across different users. We evaluate the proposed system using two real-world datasets, and we show that it outperforms state-of-the-art FL solutions. In particular, our numerical results highlight the effectiveness of our approach and its ability to provide 4-6% increase in the classification accuracy, with respect to hierarchical FL schemes that consider distance-based user assignment. Furthermore, the proposed approach could significantly accelerate FL training and reduce communication overhead by providing 75-85% reduction in the communication rounds between edge nodes and the centralized server, for the same model accuracy.



قيم البحث

اقرأ أيضاً

Since edge device failures (i.e., anomalies) seriously affect the production of industrial products in Industrial IoT (IIoT), accurately and timely detecting anomalies is becoming increasingly important. Furthermore, data collected by the edge device may contain the users private data, which is challenging the current detection approaches as user privacy is calling for the public concern in recent years. With this focus, this paper proposes a new communication-efficient on-device federated learning (FL)-based deep anomaly detection framework for sensing time-series data in IIoT. Specifically, we first introduce a FL framework to enable decentralized edge devices to collaboratively train an anomaly detection model, which can improve its generalization ability. Second, we propose an Attention Mechanism-based Convolutional Neural Network-Long Short Term Memory (AMCNN-LSTM) model to accurately detect anomalies. The AMCNN-LSTM model uses attention mechanism-based CNN units to capture important fine-grained features, thereby preventing memory loss and gradient dispersion problems. Furthermore, this model retains the advantages of LSTM unit in predicting time series data. Third, to adapt the proposed framework to the timeliness of industrial anomaly detection, we propose a gradient compression mechanism based on Top-textit{k} selection to improve communication efficiency. Extensive experiment studies on four real-world datasets demonstrate that the proposed framework can accurately and timely detect anomalies and also reduce the communication overhead by 50% compared to the federated learning framework that does not use a gradient compression scheme.
Internet of Things (IoT) devices are becoming increasingly popular and are influencing many application domains such as healthcare and transportation. These devices are used for real-world applications such as sensor monitoring, real-time control. In this work, we look at differentially private (DP) neural network (NN) based network intrusion detection systems (NIDS) to detect intrusion attacks on networks of such IoT devices. Existing NN training solutions in this domain either ignore privacy considerations or assume that the privacy requirements are homogeneous across all users. We show that the performance of existing differentially private stochastic methods degrade for clients with non-identical data distributions when clients privacy requirements are heterogeneous. We define a cohort-based $(epsilon,delta)$-DP framework that models the more practical setting of IoT device cohorts with non-identical clients and heterogeneous privacy requirements. We propose two novel continual-learning based DP training methods that are designed to improve model performance in the aforementioned setting. To the best of our knowledge, ours is the first system that employs a continual learning-based approach to handle heterogeneity in client privacy requirements. We evaluate our approach on real datasets and show that our techniques outperform the baselines. We also show that our methods are robust to hyperparameter changes. Lastly, we show that one of our proposed methods can easily adapt to post-hoc relaxations of client privacy requirements.
201 - Yuhao Zhou , Ye Qing , 2020
Petabytes of data are generated each day by emerging Internet of Things (IoT), but only few of them can be finally collected and used for Machine Learning (ML) purposes due to the apprehension of data & privacy leakage, which seriously retarding MLs growth. To alleviate this problem, Federated learning is proposed to perform model training by multiple clients combined data without the dataset sharing within the cluster. Nevertheless, federated learning introduces massive communication overhead as the synchronized data in each epoch is of the same size as the model, and thereby leading to a low communication efficiency. Consequently, variant methods mainly focusing on the communication rounds reduction and data compression are proposed to reduce the communication overhead of federated learning. In this paper, we propose Overlap-FedAvg, a framework that parallels the model training phase with model uploading & downloading phase, so that the latter phase can be totally covered by the former phase. Compared to vanilla FedAvg, Overlap-FedAvg is further developed with a hierarchical computing strategy, a data compensation mechanism and a nesterov accelerated gradients~(NAG) algorithm. Besides, Overlap-FedAvg is orthogonal to many other compression methods so that they can be applied together to maximize the utilization of the cluster. Furthermore, the theoretical analysis is provided to prove the convergence of the proposed Overlap-FedAvg framework. Extensive experiments on both conventional and recurrent tasks with multiple models and datasets also demonstrate that the proposed Overlap-FedAvg framework substantially boosts the federated learning process.
Deep AUC (area under the ROC curve) Maximization (DAM) has attracted much attention recently due to its great potential for imbalanced data classification. However, the research on Federated Deep AUC Maximization (FDAM) is still limited. Compared wit h standard federated learning (FL) approaches that focus on decomposable minimization objectives, FDAM is more complicated due to its minimization objective is non-decomposable over individual examples. In this paper, we propose improved FDAM algorithms for heterogeneous data by solving the popular non-convex strongly-concave min-max formulation of DAM in a distributed fashion, which can also be applied to a class of non-convex strongly-concave min-max problems. A striking result of this paper is that the communication complexity of the proposed algorithm is a constant independent of the number of machines and also independent of the accuracy level, which improves an existing result by orders of magnitude. The experiments have demonstrated the effectiveness of our FDAM algorithm on benchmark datasets, and on medical chest X-ray images from different organizations. Our experiment shows that the performance of FDAM using data from multiple hospitals can improve the AUC score on testing data from a single hospital for detecting life-threatening diseases based on chest radiographs. The proposed method is implemented in our open-sourced library LibAUC (www.libauc.org) whose github address is https://github.com/Optimization-AI/ICML2021_FedDeepAUC_CODASCA.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which c an incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا