ترغب بنشر مسار تعليمي؟ اضغط هنا

FedSkel: Efficient Federated Learning on Heterogeneous Systems with Skeleton Gradients Update

107   0   0.0 ( 0 )
 نشر من قبل Jianlei Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning aims to protect users privacy while performing data analysis from different participants. However, it is challenging to guarantee the training efficiency on heterogeneous systems due to the various computational capabilities and communication bottlenecks. In this work, we propose FedSkel to enable computation-efficient and communication-efficient federated learning on edge devices by only updating the models essential parts, named skeleton networks. FedSkel is evaluated on real edge devices with imbalanced datasets. Experimental results show that it could achieve up to 5.52$times$ speedups for CONV layers back-propagation, 1.82$times$ speedups for the whole training process, and reduce 64.8% communication cost, with negligible accuracy loss.


قيم البحث

اقرأ أيضاً

Although many achievements have been made since Google threw out the paradigm of federated learning (FL), there still exists much room for researchers to optimize its efficiency. In this paper, we propose a high efficient FL method equipped with the double head design aiming for personalization optimization over non-IID dataset, and the gradual model sharing design for communication saving. Experimental results show that, our method has more stable accuracy performance and better communication efficient across various data distributions than other state of art methods (SOTAs), makes it more industry-friendly.
Federated learning enables multiple clients to collaboratively learn a global model by periodically aggregating the clients models without transferring the local data. However, due to the heterogeneity of the system and data, many approaches suffer f rom the client-drift issue that could significantly slow down the convergence of the global model training. As clients perform local updates on heterogeneous data through heterogeneous systems, their local models drift apart. To tackle this issue, one intuitive idea is to guide the local model training by the global teachers, i.e., past global models, where each client learns the global knowledge from past global models via adaptive knowledge distillation techniques. Coming from these insights, we propose a novel approach for heterogeneous federated learning, namely FedGKD, which fuses the knowledge from historical global models for local training to alleviate the client-drift issue. In this paper, we evaluate FedGKD with extensive experiments on various CV/NLP datasets (i.e., CIFAR-10/100, Tiny-ImageNet, AG News, SST5) and different heterogeneous settings. The proposed method is guaranteed to converge under common assumptions, and achieves superior empirical accuracy in fewer communication runs than five state-of-the-art methods.
Federated Learning (FL) allows edge devices to collaboratively learn a shared prediction model while keeping their training data on the device, thereby decoupling the ability to do machine learning from the need to store data in the cloud. Despite th e algorithmic advancements in FL, the support for on-device training of FL algorithms on edge devices remains poor. In this paper, we present an exploration of on-device FL on various smartphones and embedded devices using the Flower framework. We also evaluate the system costs of on-device FL and discuss how this quantification could be used to design more efficient FL algorithms.
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model, without the need to share their local data. It is a promising solution for telemonitoring systems that demand inten sive data collection, for detection, classification, and prediction of future events, from different locations while maintaining a strict privacy constraint. Due to privacy concerns and critical communication bottlenecks, it can become impractical to send the FL updated models to a centralized server. Thus, this paper studies the potential of hierarchical FL in IoT heterogeneous systems and propose an optimized solution for user assignment and resource allocation on multiple edge nodes. In particular, this work focuses on a generic class of machine learning models that are trained using gradient-descent-based schemes while considering the practical constraints of non-uniformly distributed data across different users. We evaluate the proposed system using two real-world datasets, and we show that it outperforms state-of-the-art FL solutions. In particular, our numerical results highlight the effectiveness of our approach and its ability to provide 4-6% increase in the classification accuracy, with respect to hierarchical FL schemes that consider distance-based user assignment. Furthermore, the proposed approach could significantly accelerate FL training and reduce communication overhead by providing 75-85% reduction in the communication rounds between edge nodes and the centralized server, for the same model accuracy.
In this paper, we propose an energy-efficient federated meta-learning framework. The objective is to enable learning a meta-model that can be fine-tuned to a new task with a few number of samples in a distributed setting and at low computation and co mmunication energy consumption. We assume that each task is owned by a separate agent, so a limited number of tasks is used to train a meta-model. Assuming each task was trained offline on the agents local data, we propose a lightweight algorithm that starts from the local models of all agents, and in a backward manner using projected stochastic gradient ascent (P-SGA) finds a meta-model. The proposed method avoids complex computations such as computing hessian, double looping, and matrix inversion, while achieving high performance at significantly less energy consumption compared to the state-of-the-art methods such as MAML and iMAML on conducted experiments for sinusoid regression and image classification tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا