ﻻ يوجد ملخص باللغة العربية
Federated learning aims to protect users privacy while performing data analysis from different participants. However, it is challenging to guarantee the training efficiency on heterogeneous systems due to the various computational capabilities and communication bottlenecks. In this work, we propose FedSkel to enable computation-efficient and communication-efficient federated learning on edge devices by only updating the models essential parts, named skeleton networks. FedSkel is evaluated on real edge devices with imbalanced datasets. Experimental results show that it could achieve up to 5.52$times$ speedups for CONV layers back-propagation, 1.82$times$ speedups for the whole training process, and reduce 64.8% communication cost, with negligible accuracy loss.
Although many achievements have been made since Google threw out the paradigm of federated learning (FL), there still exists much room for researchers to optimize its efficiency. In this paper, we propose a high efficient FL method equipped with the
Federated learning enables multiple clients to collaboratively learn a global model by periodically aggregating the clients models without transferring the local data. However, due to the heterogeneity of the system and data, many approaches suffer f
Federated Learning (FL) allows edge devices to collaboratively learn a shared prediction model while keeping their training data on the device, thereby decoupling the ability to do machine learning from the need to store data in the cloud. Despite th
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model, without the need to share their local data. It is a promising solution for telemonitoring systems that demand inten
In this paper, we propose an energy-efficient federated meta-learning framework. The objective is to enable learning a meta-model that can be fine-tuned to a new task with a few number of samples in a distributed setting and at low computation and co