ﻻ يوجد ملخص باللغة العربية
Wave--current interaction (WCI) dynamics energizes and mixes the ocean thermocline by producing a combination of Langmuir circulation, internal waves and turbulent shear flows, which interact over a wide range of time scales. Two complementary approaches exist for approximating different aspects of WCI dynamics. These are the Generalized Lagrangian Mean (GLM) approach and the Gent--McWilliams (GM) approach. Their complementarity is evident in their Kelvin circulation theorems. GLM introduces a wave pseudomomentum per unit mass into its Kelvin circulation integrand, while GM introduces a an additional `bolus velocity to transport its Kelvin circulation loop. The GLM approach models Eulerian momentum, while the GM approach models Lagrangian transport. In principle, both GLM and GM are based on the Euler--Boussinesq (EB) equations for an incompressible, stratified, rotating flow. The differences in their Kelvin theorems arise from differences in how they model the flow map in the Lagrangian for the Hamilton variational principle underlying the EB equations. A recently developed approach for uncertainty quantification in fluid dynamics constrains fluid variational principles to require that Lagrangian trajectories undergo Stochastic Advection by Lie Transport (SALT). Here we introduce stochastic closure strategies for quantifying uncertainty in WCI by adapting the SALT approach to both the GLM and GM approximations of the EB variational principle. In the GLM framework, we introduce a stochastic group velocity for transport of wave properties, relative to the frame of motion of the Lagrangian mean flow velocity and a stochastic pressure contribution from the fluctuating kinetic energy. In the GM framework we introduce a stochastic bolus velocity in addition to the mean drift velocity by imposing the SALT constraint in the GM variational principle.
We are modelling multi-scale, multi-physics uncertainty in wave-current interaction (WCI). To model uncertainty in WCI, we introduce stochasticity into the wave dynamics of two classic models of WCI; namely, the Generalised Lagrangian Mean (GLM) mode
The classic evolution equations for potential flow on the free surface of a fluid flow are not closed because the pressure and the vertical velocity dynamics are not specified on the free surface. Moreover, their wave dynamics does not cause circulat
Truncated Taylor expansions of smooth flow maps are used in Hamiltons principle to derive a multiscale Lagrangian particle representation of ideal fluid dynamics. Numerical simulations for scattering of solutions at one level of truncation are found
In a recent work, we proposed a hypothesis that the turbulence in gases could be produced by particles interacting via a potential - for example, the interatomic potential at short ranges, and the electrostatic potential at long ranges. Here, we exam
Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demons