ﻻ يوجد ملخص باللغة العربية
Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demonstrate that an energy cascade in wave turbulence can be bi-directional, that is, can simultaneously flow towards large and small wavelength scales from the pumping scales at which it is injected. This observation is in sharp contrast to existing experiments and wave turbulence theory where the energy flux only flows in one direction. We demonstrate that the bi-directional energy cascade changes the energy budget in the system and leads to formation of large-scale, large-amplitude waves similar to oceanic rogue waves. To study surface wave turbulence, we took advantage of capillary waves on a free, weakly charged surface of superfluid helium He-II at temperature 1.7K. Although He-II demonstrates non-classical thermomechanical effects and quantized vorticity, waves on its surface are identical to those on a classical Newtonian fluid with extremely low viscosity. The possibility of directly driving a charged surface by an oscillating electric field and the low viscosity of He-II have allowed us to isolate the surface dynamics and study nonlinear surface waves in a range of frequencies much wider than in experiments with classical fluids.
The low wavenumber expansion of the energy spectrum takes the well known form: $ E(k,t) = E_2(t) k^2 + E_4(t) k^4 + ... $, where the coefficients are weighted integrals against the correlation function $C(r,t)$. We show that expressing $E(k,t)$ in te
We analyze analytically and numerically the scale invariant stationary solution to the internal wave kinetic equation. Our analysis of the resonant energy transfers shows that the leading order contributions are given (i) by triads with extreme scale
We investigate experimentally turbulence of surface gravity waves in the Coriolis facility in Grenoble by using both high sensitivity local probes and a time and space resolved stereoscopic reconstruction of the water surface. We show that the water
In a recent work, we proposed a hypothesis that the turbulence in gases could be produced by particles interacting via a potential - for example, the interatomic potential at short ranges, and the electrostatic potential at long ranges. Here, we exam
In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both of the Fourier space and