ترغب بنشر مسار تعليمي؟ اضغط هنا

A jetlet hierarchy for ideal fluid dynamics

382   0   0.0 ( 0 )
 نشر من قبل Henry O. Jacobs
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Truncated Taylor expansions of smooth flow maps are used in Hamiltons principle to derive a multiscale Lagrangian particle representation of ideal fluid dynamics. Numerical simulations for scattering of solutions at one level of truncation are found to produce solutions at higher levels. These scattering events to higher levels in the Taylor expansion are interpreted as modeling a cascade to smaller scales.



قيم البحث

اقرأ أيضاً

We review the role of dual pairs in mechanics and use them to derive particle-like solutions to regularized incompressible fluid systems. In our case we have a dual pair resulting from the action of diffeomorphisms on point particles (essentially by moving the points). We then augment our dual pair by considering the action of diffeomorphisms on Taylor series, also known as jets. The augmented weak dual pairs induce a hierarchy of particle-like solutions and conservation laws with particles carrying a copy of a jet group. We call these augmented particles jetlets. The jet groups serve as finite-dimensional models of the diffeomorphism group itself, and so the jetlet particles serve as a finite-dimensional model of the self-similarity exhibited by ideal incompressible fluids. The conservation law associated to jetlet solutions is shown to be a shadow of Kelvins circulation theorem. Finally, we study the dynamics of infinite time particle mergers. We prove that two merging particles at the zeroth level in the hierarchy yield dynamics which asymptotically approach that of a single particle in the first level in the hierarchy. This merging behavior is then verified numerically as well as the exchange of angular momentum which must occur during a near collision of two particles. The resulting particle-like solutions suggest a new class of meshless methods which work in dimensions $n geq 2$ and which exhibit a shadow of Kelvins circulation theorem. More broadly, this provides one of the first finite-dimensional models of self-similarity in ideal fluids.
A physical model of a three-dimensional flow of a viscous bubbly fluid in an intermediate regime between bubble formation and breakage is presented. The model is based on mechanics and thermodynamics of a single bubble coupled to the dynamics of a vi scous fluid as a whole, and takes into account multiple physical effects, including gravity, viscosity, and surface tension. Dimensionle
90 - V. Grassi , R.A. Leo , G. Soliani 2001
The Navier-Stokes-Fourier model for a 3D thermoconducting viscous fluid, where the evolution equation for the temperature T contains a term proportional to the rate of energy dissipation, is investigated analitically at the light of the rotational in variance property. Two cases are considered: the Couette flow and a flow with a radial velocity between two rotating impermeable and porous coaxial cylinders, respectively. In both cases, we show the existence of a maximum value of T, T_max, when the difference of temperature Delta T=T_2-T_1 on the surfaces of the cylinders is assigned. The role of T_max is discussed in the context of different physical situations.
191 - Darryl D. Holm 2019
Wave--current interaction (WCI) dynamics energizes and mixes the ocean thermocline by producing a combination of Langmuir circulation, internal waves and turbulent shear flows, which interact over a wide range of time scales. Two complementary approa ches exist for approximating different aspects of WCI dynamics. These are the Generalized Lagrangian Mean (GLM) approach and the Gent--McWilliams (GM) approach. Their complementarity is evident in their Kelvin circulation theorems. GLM introduces a wave pseudomomentum per unit mass into its Kelvin circulation integrand, while GM introduces a an additional `bolus velocity to transport its Kelvin circulation loop. The GLM approach models Eulerian momentum, while the GM approach models Lagrangian transport. In principle, both GLM and GM are based on the Euler--Boussinesq (EB) equations for an incompressible, stratified, rotating flow. The differences in their Kelvin theorems arise from differences in how they model the flow map in the Lagrangian for the Hamilton variational principle underlying the EB equations. A recently developed approach for uncertainty quantification in fluid dynamics constrains fluid variational principles to require that Lagrangian trajectories undergo Stochastic Advection by Lie Transport (SALT). Here we introduce stochastic closure strategies for quantifying uncertainty in WCI by adapting the SALT approach to both the GLM and GM approximations of the EB variational principle. In the GLM framework, we introduce a stochastic group velocity for transport of wave properties, relative to the frame of motion of the Lagrangian mean flow velocity and a stochastic pressure contribution from the fluctuating kinetic energy. In the GM framework we introduce a stochastic bolus velocity in addition to the mean drift velocity by imposing the SALT constraint in the GM variational principle.
The incompressibility constraint for fluid flow was imposed by Lagrange in the so-called Lagrangian variable description using his method of multipliers in the Lagrangian (variational) formulation. An alternative is the imposition of incompressibilit y in the Eulerian variable description by a generalization of Diracs constraint method using noncanonical Poisson brackets. Here it is shown how to impose the incompressibility constraint using Diracs method in terms of both the canonical Poisson brackets in the Lagrangian variable description and the noncanonical Poisson brackets in the Eulerian description, allowing for the advection of density. Both cases give dynamics of infinite-dimensional geodesic flow on the group of volume preserving diffeomorphisms and explicit expressions for this dynamics in terms of the constraints and original variables is given. Because Lagrangian and Eulerian conservation laws are not identical, comparison of the various methods is made.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا