ﻻ يوجد ملخص باللغة العربية
In a recent work, we proposed a hypothesis that the turbulence in gases could be produced by particles interacting via a potential - for example, the interatomic potential at short ranges, and the electrostatic potential at long ranges. Here, we examine the proposed mechanics of turbulence formation in a simple model of two particles, which interact solely via a potential. Following the kinetic theory approach, we derive a hierarchy of the velocity moment transport equations, and then truncate it via a novel closure based on the high Reynolds number condition. While standard closures of the velocity moment hierarchy of the Boltzmann equation lead to the compressible Euler and Navier-Stokes systems of equations, our closure leads to a transport equation for the velocity alone, which is driven by the potential forcing. Starting from a large scale laminar shear flow, we numerically simulate the solutions of our velocity transport equation for the electrostatic, gravity, Thomas-Fermi and Lennard-Jones potentials, as well as the Vlasov-type large scale mean field potential. In all studied scenarios, the time-averaged Fourier spectra of the kinetic energy clearly exhibit Kolmogorovs five-thirds power decay rate.
For a large system of identical particles interacting by means of a potential, we find that a strong large scale flow velocity can induce motions in the inertial range via the potential coupling. This forcing lies in special bundles in the Fourier sp
Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demons
The low wavenumber expansion of the energy spectrum takes the well known form: $ E(k,t) = E_2(t) k^2 + E_4(t) k^4 + ... $, where the coefficients are weighted integrals against the correlation function $C(r,t)$. We show that expressing $E(k,t)$ in te
Wave--current interaction (WCI) dynamics energizes and mixes the ocean thermocline by producing a combination of Langmuir circulation, internal waves and turbulent shear flows, which interact over a wide range of time scales. Two complementary approa
We are modelling multi-scale, multi-physics uncertainty in wave-current interaction (WCI). To model uncertainty in WCI, we introduce stochasticity into the wave dynamics of two classic models of WCI; namely, the Generalised Lagrangian Mean (GLM) mode