ﻻ يوجد ملخص باللغة العربية
The classic evolution equations for potential flow on the free surface of a fluid flow are not closed because the pressure and the vertical velocity dynamics are not specified on the free surface. Moreover, their wave dynamics does not cause circulation of the fluid velocity on the free surface. The equations for free-surface motion we derive here are closed and they are not restricted to potential flow. Hence, true wave-current interaction dynamics can occur. In particular, the Kelvin-Noether theorem demonstrates that wave activity can induce fluid circulation and vorticity dynamics on the free surface. The wave-current interaction equations introduced here open new vistas for both the deterministic and stochastic analysis of nonlinear waves on free surfaces.
We are modelling multi-scale, multi-physics uncertainty in wave-current interaction (WCI). To model uncertainty in WCI, we introduce stochasticity into the wave dynamics of two classic models of WCI; namely, the Generalised Lagrangian Mean (GLM) mode
Wave--current interaction (WCI) dynamics energizes and mixes the ocean thermocline by producing a combination of Langmuir circulation, internal waves and turbulent shear flows, which interact over a wide range of time scales. Two complementary approa
We investigate analytically the linearized water wave radiation problem for an oscillating submerged point source in an inviscid shear flow with a free surface. A constant depth is taken into account and the shear flow increases linearly with depth.
We consider waves radiated by a disturbance of oscillating strength moving at constant velocity along the free surface of a shear flow which, when undisturbed, has uniform horizontal vorticity of magnitude $S$. When no current is present the problem
Nonlinear dynamics of the free surface of finite depth non-conducting fluid with high dielectric constant subjected to a strong horizontal electric field is considered. Using the conformal transformation of the region occupied by the fluid into a str