ﻻ يوجد ملخص باللغة العربية
In the present paper, an exact mathematical solution has been obtained for nonlinear free transverse vibration of beams, for the first time. The nonlinear governing partial differential equation in un-deformed coordinates system has been converted in two coupled partial differential equations in deformed coordinates system. A mathematical explanation is obtained for nonlinear mode shapes as well as natural frequencies versus geometrical and material properties of beam. It is shown that as the th mode of transverse vibration excited, the mode 2 th of in-plane vibration will be developed. The result of present work is compared with those obtained from Galerkin method and the observed agreement confirms the exact mathematical solution. It is shown that the governing equation is linear in the time domain. As a parameter, the amplitude to length ratio has been proposed to show when the nonlinear terms become dominant in the behavior of structure.
In the present paper, the nonlinear differential equation of pendulum is investigated to find an exact closed form solution, satisfying governing equation as well as initial conditions. The new concepts used in the suggested method are introduced. Re
We present a novel procedure to solve the Schrodinger equation, which in optics is the paraxial wave equation, with an initial multisingular vortex Gaussian beam. This initial condition has a number of singularities in a plane transversal to propagat
We propose a method for generalizing the Ising model in magnetic fields and calculating the partition function (exact solution) for the Ising model of an arbitrary shape. Specifically, the partition function is calculated using matrices that are crea
There is no an exact solution to three-dimensional (3D) finite-size Ising model (referred to as the Ising model hereafter for simplicity) and even two-dimensional (2D) Ising model with non-zero external field to our knowledge. Here by using an elemen
The outlook of a simple method to generate localized (soliton-like) potentials of time-dependent Schrodinger type equations is given. The conditions are discussed for the potentials to be real and nonsingular. For the derivative Schrodinger equation