ﻻ يوجد ملخص باللغة العربية
In the present paper, the nonlinear differential equation of pendulum is investigated to find an exact closed form solution, satisfying governing equation as well as initial conditions. The new concepts used in the suggested method are introduced. Regarding the fact that the governing equation for any arbitrary system represents its inherent properties, it is shown that the nonlinear term causes that the system to have a variable identity. Hence, the original function is included as a variable in the solution to can take into account the variation of governing equation. To find the exact closed form solution, the variation of the nonlinear differential equation tends to zero, where in this case the system with a local linear differential equation has a definite identity with a definite local answer. It is shown that the general answer is an arbitrary curve on a surface, a newly developed concept known as super function, and different initial conditions give different curves as particular solutions. The comparison of the results with those of finite difference shows an exact agreement for any arbitrary amplitude and initial conditions.
The Schr{o}dinger equation is solved exactly for some well known potentials. Solutions are obtained reducing the Schr{o}dinger equation into a second order differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov
In the present paper, an exact mathematical solution has been obtained for nonlinear free transverse vibration of beams, for the first time. The nonlinear governing partial differential equation in un-deformed coordinates system has been converted in
We propose a method for generalizing the Ising model in magnetic fields and calculating the partition function (exact solution) for the Ising model of an arbitrary shape. Specifically, the partition function is calculated using matrices that are crea
The determinant of a lower Hessenberg matrix (Hessenbergian) is expressed as a sum of signed elementary products indexed by initial segments of nonnegative integers. A closed form alternative to the recurrence expression of Hessenbergians is thus obt
We present a closed form solution to the eigenvalue problem of a class of master equations that describe open quantum system with loss and dephasing but without gain. The method relies on the existence of a conserved number of excitation in the Hamil