ﻻ يوجد ملخص باللغة العربية
We propose a method for generalizing the Ising model in magnetic fields and calculating the partition function (exact solution) for the Ising model of an arbitrary shape. Specifically, the partition function is calculated using matrices that are created automatically based on the structure of the system. By generalizing this method, it becomes possible to calculate the partition function of various crystal systems (network shapes) in magnetic fields when N (scale) is infinite. Furthermore, we also connect this method for finding the solution to the Ising model in magnetic fields to a method for finding the solution to Bayesian networks in information statistical mechanics (applied to data mining, machine learning, and combinatorial optimization).
There is no an exact solution to three-dimensional (3D) finite-size Ising model (referred to as the Ising model hereafter for simplicity) and even two-dimensional (2D) Ising model with non-zero external field to our knowledge. Here by using an elemen
In the present paper, the nonlinear differential equation of pendulum is investigated to find an exact closed form solution, satisfying governing equation as well as initial conditions. The new concepts used in the suggested method are introduced. Re
In this paper, we study the Ising model with general spin $S$ in presence of an external magnetic field by means of the equations of motion method and of the Greens function formalism. First, the model is shown to be isomorphic to a fermionic one con
We find an exact general solution to the three-dimensional (3D) Ising model via an exact self-consistency equation for nearest-neighbors correlations. It is derived by means of an exact solution to the recurrence equations for partial contractions of
In 1944 Onsager published the formula for the partition function of the Ising model for the infinite square lattice. He was able to express the internal energy in terms of a special function, but he left the free energy as a definite integral. Seven