ﻻ يوجد ملخص باللغة العربية
We consider the four-dimensional Euclidean dynamical triangulations lattice model of quantum gravity based on triangulations of $S^{4}$. We couple it minimally to a scalar field in the quenched approximation. Our results suggest a multiplicative renormalization for the mass of the scalar field which is consistent with the shift symmetry of the discretized lattice action. We discuss the possibility of measuring the mass anomalous dimension and the gravitational binding energy between two scalar test particles, where a negative bound state energy would imply that this model has an attractive gravitational force.
In Eddington gravity, the action principle involves only the symmetric parts of the connection and the Ricci tensor, with a metric that emerges proportionally to the latter. Here, we relax this symmetric character, prolong the action with the antisym
We show that the Plebanski-Demianski spacetime persists as a solution of General Relativity when the theory is supplemented with both, a conformally coupled scalar theory and with quadratic curvature corrections. The quadratic terms are of two types
We consider two-dimensional lattice SU($N_c$) gauge theories with $N_f$ real scalar fields transforming in the adjoint representation of the gauge group and with a global O($N_f$) invariance. Focusing on systems with $N_fge 3$, we study their zero-te
We study a c=-2 conformal field theory coupled to two-dimensional quantum gravity by means of dynamical triangulations. We define the geodesic distance r on the triangulated surface with N triangles, and show that dim[r^{d_H}]= dim[N], where the frac
We study scalar fields propagating on Euclidean dynamical triangulations (EDT). In this work we study the interaction of two scalar particles, and we show that in the appropriate limit we recover an interaction compatible with Newtons gravitational p