ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice quantum gravity with scalar fields

99   0   0.0 ( 0 )
 نشر من قبل Raghav Govind Jha
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the four-dimensional Euclidean dynamical triangulations lattice model of quantum gravity based on triangulations of $S^{4}$. We couple it minimally to a scalar field in the quenched approximation. Our results suggest a multiplicative renormalization for the mass of the scalar field which is consistent with the shift symmetry of the discretized lattice action. We discuss the possibility of measuring the mass anomalous dimension and the gravitational binding energy between two scalar test particles, where a negative bound state energy would imply that this model has an attractive gravitational force.



قيم البحث

اقرأ أيضاً

112 - Hemza Azri , Salah Nasri 2021
In Eddington gravity, the action principle involves only the symmetric parts of the connection and the Ricci tensor, with a metric that emerges proportionally to the latter. Here, we relax this symmetric character, prolong the action with the antisym metric parts of the Ricci term, and allow for various couplings with scalar fields. We propose two possible invariant actions formed by distinct combinations of the independent Ricci tensors and show that the generated metric must involve an additional antisymmetric part due to the relaxation of the symmetrization property. The comprehensive study shows that the second curvature influences the dynamics of the connection, hence its solution in terms of the metric, and the evolution of the scalar fields. These new dynamical features are expected to stand viable and to have interesting implications in domains where scalar fields are indispensable.
We show that the Plebanski-Demianski spacetime persists as a solution of General Relativity when the theory is supplemented with both, a conformally coupled scalar theory and with quadratic curvature corrections. The quadratic terms are of two types and are given by quadratic combinations of the Riemann tensor as well as a higher curvature interaction constructed with a scalar field which is conformally coupled to quadratic terms in the curvature. The later is built in terms of a four-rank tensor $S_{mu u}^{ lambdarho}$ that depends on the Riemann tensor and the scalar field, and that transforms covariantly under local Weyl rescallings. Due to the generality of the Plebanski-Demianski family, several new hairy black hole solutions are obtained in this higher curvature model. We pay particular attention to the C-metric spacetime and the stationary Taub-NUT metric, which in the hyperbolic case can be analytically extended leading to healthy, asymptotically AdS, wormhole configurations. Finally, we present a new general model for higher derivative, conformally coupled scalars, depending on an arbitrary function and that we have dubbed Conformal K-essence. We also construct spherically symmetric hairy black holes for these general models.
We consider two-dimensional lattice SU($N_c$) gauge theories with $N_f$ real scalar fields transforming in the adjoint representation of the gauge group and with a global O($N_f$) invariance. Focusing on systems with $N_fge 3$, we study their zero-te mperature limit, to understand under which conditions a continuum limit exists, and to investigate the nature of the associated quantum field theory. Extending previous analyses, we address the role that the gauge-group representation and the quartic scalar potential play in determining the nature of the continuum limit (when it exists). Our results further corroborate the conjecture that the continuum limit of two-dimensional lattice gauge models with multiflavor scalar fields, when it exists, is associated with a $sigma$ model defined on a symmetric space that has the same global symmetry as the lattice model.
84 - J. Ambjorn 1996
We study a c=-2 conformal field theory coupled to two-dimensional quantum gravity by means of dynamical triangulations. We define the geodesic distance r on the triangulated surface with N triangles, and show that dim[r^{d_H}]= dim[N], where the frac tal dimension d_H = 3.58 +/- 0.04. This result lends support to the conjecture d_H = -2alpha_1/alpha_{-1}, where alpha_{-n} is the gravitational dressing exponent of a spin-less primary field of conformal weight (n+1,n+1), and it disfavors the alternative prediction d_H = -2/gamma_{str}. On the other hand, we find dim[l] = dim[r^2] with good accuracy, where l is the length of one of the boundaries of a circle with (geodesic) radius r, i.e. the length l has an anomalous dimension relative to the area of the surface. It is further shown that the spectral dimension d_s = 1.980 +/- 0.014 for the ensemble of (triangulated) manifolds used. The results are derived using finite size scaling and a very efficient recursive sampling technique known previously to work well for c=-2.
We study scalar fields propagating on Euclidean dynamical triangulations (EDT). In this work we study the interaction of two scalar particles, and we show that in the appropriate limit we recover an interaction compatible with Newtons gravitational p otential in four dimensions. Working in the quenched approximation, we calculate the binding energy of a two-particle bound state, and we study its dependence on the constituent particle mass in the non-relativistic limit. We find a binding energy compatible with what one expects for the ground state energy by solving the Schr{o}dinger equation for Newtons potential. Agreement with this expectation is obtained in the infinite-volume, continuum limit of the lattice calculation, providing non-trivial evidence that EDT is in fact a theory of gravity in four dimensions. Furthermore, this result allows us to determine the lattice spacing within an EDT calculation for the first time, and we find that the various lattice spacings are smaller than the Planck length, suggesting that we can achieve a separation of scales and that there is no obstacle to taking a continuum limit. This lends further support to the asymptotic safety scenario for gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا