ترغب بنشر مسار تعليمي؟ اضغط هنا

Plebanski-Demianski solutions in Quadratic gravity with conformally coupled scalar fields

88   0   0.0 ( 0 )
 نشر من قبل Julio Oliva
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the Plebanski-Demianski spacetime persists as a solution of General Relativity when the theory is supplemented with both, a conformally coupled scalar theory and with quadratic curvature corrections. The quadratic terms are of two types and are given by quadratic combinations of the Riemann tensor as well as a higher curvature interaction constructed with a scalar field which is conformally coupled to quadratic terms in the curvature. The later is built in terms of a four-rank tensor $S_{mu u}^{ lambdarho}$ that depends on the Riemann tensor and the scalar field, and that transforms covariantly under local Weyl rescallings. Due to the generality of the Plebanski-Demianski family, several new hairy black hole solutions are obtained in this higher curvature model. We pay particular attention to the C-metric spacetime and the stationary Taub-NUT metric, which in the hyperbolic case can be analytically extended leading to healthy, asymptotically AdS, wormhole configurations. Finally, we present a new general model for higher derivative, conformally coupled scalars, depending on an arbitrary function and that we have dubbed Conformal K-essence. We also construct spherically symmetric hairy black holes for these general models.



قيم البحث

اقرأ أيضاً

We construct black hole solutions in four-dimensional quadratic gravity, supported by a scalar field conformally coupled to quadratic terms in the curvature. The conformal matter Lagrangian is constructed with powers of traces of a conformally covari ant tensor, which is defined in terms of the metric and a scalar field, and has the symmetries of the Riemann tensor. We find exact, neutral and charged, topological black hole solutions of this theory when the Weyl squared term is absent from the action functional. Including terms beyond quadratic order on the conformally covariant tensor, allows to have asymptotically de Sitter solutions, with a potential that is bounded from below. For generic values of the couplings we also show that static black hole solutions must have a constant Ricci scalar, and provide an analysis of the possible asymptotic behavior of both, the metric as well as the scalar field in the asymptotically AdS case, when the solutions match those of general relativity in vacuum at infinity. In this frame, the spacetime fulfils standard asymptotically AdS boundary conditions, and in spite of the non-standard couplings between the curvature and the scalar field, there is a family of black hole solutions in AdS that can be interpreted as localized objects. We also provide further comments on the extension of these results to higher dimensions.
The aim of this work is to describe the complete family of non-expanding Plebanski-Demianski type D space-times and to present their possible interpretation. We explicitly express the most general form of such (electro)vacuum solutions with any cosmo logical constant, and we investigate the geometrical and physical meaning of the seven parameters they contain. We present various metric forms, and by analyzing the corresponding coordinates in the weak-field limit we elucidate the global structure of these space-times, such as the character of possible singularities. We also demonstrate that members of this family can be understood as generalizations of classic B-metrics. In particular, the BI-metric represents an external gravitational field of a tachyonic (superluminal) source, complementary to the AI-metric which is the well-known Schwarzschild solution for exact gravitational field of a static (standing) source.
The Plebanski-Demianski metric, and those that can be obtained from it by taking coordinate transformations in certain limits, include the complete family of space-times of type D with an aligned electromagnetic field and a possibly non-zero cosmolog ical constant. Starting with a new form of the line element which is better suited both for physical interpretation and for identifying different subfamilies, we review this entire family of solutions. Our metric for the expanding case explicitly includes two parameters which represent the acceleration of the sources and the twist of the repeated principal null congruences, the twist being directly related to both the angular velocity of the sources and their NUT-like properties. The non-expanding type D solutions are also identified. All special cases are derived in a simple and transparent way.
134 - Marco Astorino 2014
Solution generating techniques for general relativity with a conformally (and minimally) coupled scalar field are pushed forward to build a wide class of asymptotically flat, axisymmetric and stationary spacetimes continuously connected to Kerr. This family contains, amongst other things, rotating extensions of the Bekenstein black hole and also its angular and mass multipolar generalisations. Further addition of NUT charge is also discussed.
126 - Marco Astorino 2013
In Einstein-Maxwell gravity with a conformally coupled scalar field, the black hole found by Bocharova, Bronnikov, Melnikov, and Bekenstein breaks when embedded in the external magnetic field of the Melvin universe. The situation improves in presence of acceleration, allowing one to build magnetised and accelerating BBMB black hole with a thin membrane. But to overcome this and others disadvantages of BBMB spacetimes, a new class of black holes, including the rotating case, is proposed for the conformal matter coupling under consideration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا