ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional lattice SU($N_c$) gauge theories with multiflavor adjoint scalar fields

206   0   0.0 ( 0 )
 نشر من قبل Alessio Franchi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider two-dimensional lattice SU($N_c$) gauge theories with $N_f$ real scalar fields transforming in the adjoint representation of the gauge group and with a global O($N_f$) invariance. Focusing on systems with $N_fge 3$, we study their zero-temperature limit, to understand under which conditions a continuum limit exists, and to investigate the nature of the associated quantum field theory. Extending previous analyses, we address the role that the gauge-group representation and the quartic scalar potential play in determining the nature of the continuum limit (when it exists). Our results further corroborate the conjecture that the continuum limit of two-dimensional lattice gauge models with multiflavor scalar fields, when it exists, is associated with a $sigma$ model defined on a symmetric space that has the same global symmetry as the lattice model.



قيم البحث

اقرأ أيضاً

We consider three-dimensional lattice SU($N_c$) gauge theories with multiflavor ($N_f>1$) scalar fields in the adjoint representation. We investigate their phase diagram, identify the different Higgs phases with their gauge-symmetry pattern, and dete rmine the nature of the transition lines. In particular, we study the role played by the quartic scalar potential and by the gauge-group representation in determining the Higgs phases and the global and gauge symmetry-breaking patterns characterizing the different transitions. The general arguments are confirmed by numerical analyses of Monte Carlo results for two representative models that are expected to have qualitatively different phase diagrams and Higgs phases. We consider the model with $N_c = 3$, $N_f=2$ and with $N_c=2$, $N_f= 4$. This second case is interesting phenomenologically to describe some features of cuprate superconductors.
We study the phase diagram and critical behavior of a two-dimensional lattice SO($N_c$) gauge theory ($N_c ge 3$) with two scalar flavors, obtained by partially gauging a maximally O($2N_c$) symmetric scalar model. The model is invariant under local SO($N_c$) and global O(2) transformations. We show that, for any $N_c ge 3$, it undergoes finite-temperature Berezinskii-Kosterlitz-Thouless (BKT) transitions, associated with the global Abelian O(2) symmetry. The transition separates a high-temperature disordered phase from a low-temperature spin-wave phase where correlations decay algebraically (quasi-long range order). The critical properties at the finite-temperature BKT transition and in the low-temperature spin-wave phase are determined by means of a finite-size scaling analysis of Monte Carlo data.
We address the interplay between global and local gauge nonabelian symmetries in lattice gauge theories with multicomponent scalar fields. We consider two-dimensional lattice scalar nonabelian gauge theories with a local SO(Nc) (Nc >= 3) and a global O(Nf) invariance, obtained by partially gauging a maximally O(Nf x Nc)-symmetric multicomponent scalar model. Correspondingly, the scalar fields belong to the coset S(Nf Nc-1)/SO(Nc), where S(N) is the N-dimensional sphere. In agreement with the Mermin-Wagner theorem, these lattice SO(Nc) gauge models with Nf >= 3 do not have finite-temperature transitions related to the breaking of the global nonabelian O(Nf) symmetry. However, in the zero-temperature limit they show a critical behavior characterized by a correlation length that increases exponentially with the inverse temperature, similarly to nonlinear O(N) sigma models. Their universal features are investigated by numerical finite-size scaling methods. The results show that the asymptotic low-temperature behavior belongs to the universality class of the two-dimensional RP(Nf-1) model.
We study the nature of the phase diagram of three-dimensional lattice models in the presence of nonabelian gauge symmetries. In particular, we consider a paradigmatic model for the Higgs mechanism, lattice scalar chromodynamics with N_f flavors, char acterized by a nonabelian SU(N_c) gauge symmetry. For N_f>1 (multiflavor case), it presents two phases separated by a transition line where a gauge-invariant order parameter condenses, being associated with the breaking of the residual global symmetry after gauging. The nature of the phase transition line is discussed within two field-theoretical approaches, the continuum scalar chromodynamics and the Landau-Ginzburg- Wilson (LGW) Phi4 approach based on a gauge-invariant order parameter. Their predictions are compared with simulation results for N_f=2, 3 and N_c = 2, 3, and 4. The LGW approach turns out to provide the correct picture of the critical behavior, unlike continuum scalar chromodynamics.
242 - Ari J. Hietanen 2008
An SU(2) gauge theory with two fermions transforming under the adjoint representation of the gauge group may appear conformal or almost conformal in the infrared. We use lattice simulations to study the spectrum of this theory and present results on the masses of several gauge singlet states as a function of the physical quark mass determined through the axial Ward identity and find indications of a change from chiral symmetry breaking to a phase consistent with conformal behaviour at beta_L ~ 2. However, the measurement of the spectrum is not alone sufficient to decisively confirm the existence of conformal fixed point in this theory as we show by comparing to similar measurements with fundamental fermions. Based on the results we sketch a possible phase diagram of this lattice theory and discuss the applicability and importance of these results for the future measurement of the evolution of the coupling constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا