ﻻ يوجد ملخص باللغة العربية
We consider two-dimensional lattice SU($N_c$) gauge theories with $N_f$ real scalar fields transforming in the adjoint representation of the gauge group and with a global O($N_f$) invariance. Focusing on systems with $N_fge 3$, we study their zero-temperature limit, to understand under which conditions a continuum limit exists, and to investigate the nature of the associated quantum field theory. Extending previous analyses, we address the role that the gauge-group representation and the quartic scalar potential play in determining the nature of the continuum limit (when it exists). Our results further corroborate the conjecture that the continuum limit of two-dimensional lattice gauge models with multiflavor scalar fields, when it exists, is associated with a $sigma$ model defined on a symmetric space that has the same global symmetry as the lattice model.
We consider three-dimensional lattice SU($N_c$) gauge theories with multiflavor ($N_f>1$) scalar fields in the adjoint representation. We investigate their phase diagram, identify the different Higgs phases with their gauge-symmetry pattern, and dete
We study the phase diagram and critical behavior of a two-dimensional lattice SO($N_c$) gauge theory ($N_c ge 3$) with two scalar flavors, obtained by partially gauging a maximally O($2N_c$) symmetric scalar model. The model is invariant under local
We address the interplay between global and local gauge nonabelian symmetries in lattice gauge theories with multicomponent scalar fields. We consider two-dimensional lattice scalar nonabelian gauge theories with a local SO(Nc) (Nc >= 3) and a global
We study the nature of the phase diagram of three-dimensional lattice models in the presence of nonabelian gauge symmetries. In particular, we consider a paradigmatic model for the Higgs mechanism, lattice scalar chromodynamics with N_f flavors, char
An SU(2) gauge theory with two fermions transforming under the adjoint representation of the gauge group may appear conformal or almost conformal in the infrared. We use lattice simulations to study the spectrum of this theory and present results on