ﻻ يوجد ملخص باللغة العربية
We study scalar fields propagating on Euclidean dynamical triangulations (EDT). In this work we study the interaction of two scalar particles, and we show that in the appropriate limit we recover an interaction compatible with Newtons gravitational potential in four dimensions. Working in the quenched approximation, we calculate the binding energy of a two-particle bound state, and we study its dependence on the constituent particle mass in the non-relativistic limit. We find a binding energy compatible with what one expects for the ground state energy by solving the Schr{o}dinger equation for Newtons potential. Agreement with this expectation is obtained in the infinite-volume, continuum limit of the lattice calculation, providing non-trivial evidence that EDT is in fact a theory of gravity in four dimensions. Furthermore, this result allows us to determine the lattice spacing within an EDT calculation for the first time, and we find that the various lattice spacings are smaller than the Planck length, suggesting that we can achieve a separation of scales and that there is no obstacle to taking a continuum limit. This lends further support to the asymptotic safety scenario for gravity.
We study the fractal structure of space-time of two-dimensional quantum gravity coupled to c=-2 conformal matter by means of computer simulations. We find that the intrinsic Hausdorff dimension d_H = 3.58 +/- 0.04. This result supports the conjecture
We present a three dimensional non-relativistic model of gravity that is invariant under the central extension of the symmetry group that leaves the recently constructed Newtonian gravity action invariant. We show that the model arises from the contr
We search for an extension of the Standard Model that contains a viable dark matter candidate and that can be embedded into a fundamental, asymptotically safe, quantum field theory with quantum gravity. Demanding asymptotic safety leads to boundary c
By restricting the functional integration to the Regge geometries, we give the discretized version of the well known path integral formulation of 2--dimensional quantum gravity in the conformal gauge. We analyze the role played by diffeomorphisms in
If a grand-unified extension of the asymptotically safe Reuter fixed-point for quantum gravity exists, it determines free parameters of the grand-unified scalar potential. All quartic couplings take their fixed-point values in the trans-Planckian reg