ﻻ يوجد ملخص باللغة العربية
We study a c=-2 conformal field theory coupled to two-dimensional quantum gravity by means of dynamical triangulations. We define the geodesic distance r on the triangulated surface with N triangles, and show that dim[r^{d_H}]= dim[N], where the fractal dimension d_H = 3.58 +/- 0.04. This result lends support to the conjecture d_H = -2alpha_1/alpha_{-1}, where alpha_{-n} is the gravitational dressing exponent of a spin-less primary field of conformal weight (n+1,n+1), and it disfavors the alternative prediction d_H = -2/gamma_{str}. On the other hand, we find dim[l] = dim[r^2] with good accuracy, where l is the length of one of the boundaries of a circle with (geodesic) radius r, i.e. the length l has an anomalous dimension relative to the area of the surface. It is further shown that the spectral dimension d_s = 1.980 +/- 0.014 for the ensemble of (triangulated) manifolds used. The results are derived using finite size scaling and a very efficient recursive sampling technique known previously to work well for c=-2.
We study the diffusion equation in two-dimensional quantum gravity, and show that the spectral dimension is two despite the fact that the intrinsic Hausdorff dimension of the ensemble of two-dimensional geometries is very different from two. We deter
We consider the four-dimensional Euclidean dynamical triangulations lattice model of quantum gravity based on triangulations of $S^{4}$. We couple it minimally to a scalar field in the quenched approximation. Our results suggest a multiplicative reno
In the context of the Integer Quantum Hall plateau transitions, we formulate a specific map from random landscape potentials onto 2D discrete random surfaces. Critical points of the potential, namely maxima, minima and saddle points uniquely define a
We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the corr
Quantum technologies offer the prospect to efficiently simulate sign-problem afflicted regimes in lattice field theory, such as the presence of topological terms, chemical potentials, and out-of-equilibrium dynamics. In this work, we derive the 3+1D