ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum geometry of topological gravity

85   0   0.0 ( 0 )
 نشر من قبل Konstantinos Anagnostopoulos
 تاريخ النشر 1996
  مجال البحث
والبحث باللغة English
 تأليف J. Ambjorn




اسأل ChatGPT حول البحث

We study a c=-2 conformal field theory coupled to two-dimensional quantum gravity by means of dynamical triangulations. We define the geodesic distance r on the triangulated surface with N triangles, and show that dim[r^{d_H}]= dim[N], where the fractal dimension d_H = 3.58 +/- 0.04. This result lends support to the conjecture d_H = -2alpha_1/alpha_{-1}, where alpha_{-n} is the gravitational dressing exponent of a spin-less primary field of conformal weight (n+1,n+1), and it disfavors the alternative prediction d_H = -2/gamma_{str}. On the other hand, we find dim[l] = dim[r^2] with good accuracy, where l is the length of one of the boundaries of a circle with (geodesic) radius r, i.e. the length l has an anomalous dimension relative to the area of the surface. It is further shown that the spectral dimension d_s = 1.980 +/- 0.014 for the ensemble of (triangulated) manifolds used. The results are derived using finite size scaling and a very efficient recursive sampling technique known previously to work well for c=-2.



قيم البحث

اقرأ أيضاً

59 - J. Ambjorn 1998
We study the diffusion equation in two-dimensional quantum gravity, and show that the spectral dimension is two despite the fact that the intrinsic Hausdorff dimension of the ensemble of two-dimensional geometries is very different from two. We deter mine the scaling properties of the quantum gravity averaged diffusion kernel.
We consider the four-dimensional Euclidean dynamical triangulations lattice model of quantum gravity based on triangulations of $S^{4}$. We couple it minimally to a scalar field in the quenched approximation. Our results suggest a multiplicative reno rmalization for the mass of the scalar field which is consistent with the shift symmetry of the discretized lattice action. We discuss the possibility of measuring the mass anomalous dimension and the gravitational binding energy between two scalar test particles, where a negative bound state energy would imply that this model has an attractive gravitational force.
In the context of the Integer Quantum Hall plateau transitions, we formulate a specific map from random landscape potentials onto 2D discrete random surfaces. Critical points of the potential, namely maxima, minima and saddle points uniquely define a discrete surface $S$ and its dual $S^*$ made of quadrangular and $n-$gonal faces, respectively, thereby linking the geometry of the potential with the geometry of discrete surfaces. The map is parameter-dependent on the Fermi level. Edge states of Fermi lakes moving along equipotential contours between neighbour saddle points form a network of scatterings, which define the geometric basis, in the fermionic model, for the plateau transitions. The replacement probability characterizing the network model with geometric disorder recently proposed by Gruzberg, Klumper, Nuding and Sedrakyan, is physically interpreted within the current framework as a parameter connected with the Fermi level.
We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the corr ect classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge Q. Irrespective of this, in the 2-d O(3) model the topological susceptibility chi_t = l< Q^2 >/V is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some classically important features of an action are irrelevant for reaching the correct quantum continuum limit.
Quantum technologies offer the prospect to efficiently simulate sign-problem afflicted regimes in lattice field theory, such as the presence of topological terms, chemical potentials, and out-of-equilibrium dynamics. In this work, we derive the 3+1D topological $theta$-term for Abelian and non-Abelian lattice gauge theories in the Hamiltonian formulation, paving the way towards Hamiltonian-based simulations of such terms on quantum and classical computers. We further study numerically the zero-temperature phase structure of a 3+1D U(1) lattice gauge theory with the $theta$-term via exact diagonalization for a single periodic cube. In the strong coupling regime, our results suggest the occurrence of a phase transition at constant values of $theta$, as indicated by an avoided level-crossing and abrupt changes in the plaquette expectation value, the electric energy density, and the topological charge density. These results could in principle be cross-checked by the recently developed 3+1D tensor network methods and quantum simulations, once sufficient resources become available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا