ﻻ يوجد ملخص باللغة العربية
I explore signatures of a possible dust formation in the late SN~2010jl that could be imprinted in the line blueshift and the radius evolution of the dusty infrared-emitting shell. I propose a simple model that permits one to reproduce emission lines of blueshifted hydrogen and helium emission lines. The model suggests that the hydrogen emission originates primarily from shocked fragmented circumstellar clumps partially obscured by the absorbing cool dense shell and by unshocked ejecta. In the He I 1.083 $mu$m line on day 178 this component is significantly weaker compared to broad component from unshocked ejecta that is obscured by the absorprion produced by ejecta itself. Simulations of late time ($t > 400$ d) H$alpha$ suggest that, apart from the dust in the cool dense shell, a significant amount of dust must form in the unshocked supernova ejecta. The supernova radius predicted by the interaction model coincides with the radius of the dusty shell recovered from late time (> 460 days) infrared data, which strongly support that infrared radiation indeed originates from supernova. The ejecta dust is presumably locked in opaque blobs.
HST and ground based observations of the Type IIn SN 2010jl are analyzed, including photometry, spectroscopy in the ultraviolet, optical and NIR bands, 26-1128 days after first detection. At maximum the bolometric luminosity was $sim 3times10^{43}$ e
Type IIn SNe show spectral evidence for strong interaction between their blast wave and dense circumstellar material (CSM) around the progenitor star. SN2010jl was the brightest core-collapse SN in 2010, and it was a Type IIn explosion with strong CS
The nature of the progenitor star (or system) for the Type IIn supernova (SN) subclass remains uncertain. While there are direct imaging constraints on the progenitors of at least four Type IIn supernovae, one of them being SN 2010jl, ambiguities rem
We present optical and near-infrared photometry and spectroscopy of the Type IIn supernova (SN) 2014ab, obtained by the Carnegie Supernova Project II (CSP-II) and initiated immediately after its optical discovery. We also present mid-infrared photome
In this paper we report the results of the first $sim$four years of spectroscopic and photometric monitoring of the Type IIn supernova SN 2015da (also known as PSN J13522411+3941286, or iPTF16tu). The supernova exploded in the nearby spiral galaxy NG