ترغب بنشر مسار تعليمي؟ اضغط هنا

High Density Circumstellar Interaction in the Luminous Type IIn SN 2010jl: The first 1100 days

168   0   0.0 ( 0 )
 نشر من قبل Claes Fransson
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HST and ground based observations of the Type IIn SN 2010jl are analyzed, including photometry, spectroscopy in the ultraviolet, optical and NIR bands, 26-1128 days after first detection. At maximum the bolometric luminosity was $sim 3times10^{43}$ erg/s and even at 850 days exceeds $10^{42}$ erg/s. A NIR excess, dominating after 400 days, probably originates in dust in the circumstellar medium (CSM). The total radiated energy is $> 6.5times10^{50}$ ergs, excluding the dust component. The spectral lines can be separated into one broad component due to electron scattering, and one narrow with expansion velocity $sim 100$ km/s from the CSM. The broad component is initially symmetric around zero velocity but becomes blueshifted after $sim 50$ days, while remaining symmetric about a shifted centroid velocity. Dust absorption in the ejecta is unlikely to explain the line shifts, and we attribute the shift instead to acceleration by the SN radiation. From the optical lines and the X-ray and dust properties, there is strong evidence for large scale asymmetries in the CSM. The ultraviolet lines indicate CNO processing in the progenitor, while the optical shows a number of narrow coronal lines excited by the X-rays. The bolometric light curve is consistent with a radiative shock in an $r^{-2}$ CSM with a mass loss rate of $sim 0.1$ M_sun/yr. The total mass lost is $> 3$ M_sun. These properties are consistent with the SN expanding into a CSM characteristic of an LBV progenitor with a bipolar geometry. The apparent absence of nuclear processing is attributed to a CSM still opaque to electron scattering.



قيم البحث

اقرأ أيضاً

129 - Ori D. Fox 2016
The nature of the progenitor star (or system) for the Type IIn supernova (SN) subclass remains uncertain. While there are direct imaging constraints on the progenitors of at least four Type IIn supernovae, one of them being SN 2010jl, ambiguities rem ain in the interpretation of the unstable progenitors and the explosive events themselves. A blue source in pre-explosion HST/WFPC2 images falls within the 5 sigma astrometric error circle derived from post-explosion ground-based imaging of SN 2010jl. At the time the ground-based astrometry was published, however, the SN had not faded sufficiently for post-explosion HST follow-up observations to determine a more precise astrometric solution and/or confirm if the pre-explosion source had disappeared, both of which are necessary to ultimately disentangle the possible progenitor scenarios. Here we present HST/WFC3 imaging of the SN 2010jl field obtained in 2014 and 2015, when the SN had faded sufficiently to allow for new constraints on the progenitor. The SN, which is still detected in the new images, is offset by 0.099 +/- 0.008 (24 +/- 2 pc) from the underlying and extended source of emission that contributes at least partially, if not entirely, to the blue source previously suggested as the candidate progenitor in the WFPC2 data. This point alone rules out the possibility that the blue source in the pre-explosion images is the exploding star, but may instead suggest an association with a young (<5-6 Myr) cluster and still argues for a massive (>30 solar masses) progenitor. We obtain new upper limits on the flux from a single star at the SN position in the pre-explosion WFPC2 and Spitzer/IRAC images that may ultimately be used to constrain the progenitor properties.
80 - Nikolai N. Chugai 2018
I explore signatures of a possible dust formation in the late SN~2010jl that could be imprinted in the line blueshift and the radius evolution of the dusty infrared-emitting shell. I propose a simple model that permits one to reproduce emission lines of blueshifted hydrogen and helium emission lines. The model suggests that the hydrogen emission originates primarily from shocked fragmented circumstellar clumps partially obscured by the absorbing cool dense shell and by unshocked ejecta. In the He I 1.083 $mu$m line on day 178 this component is significantly weaker compared to broad component from unshocked ejecta that is obscured by the absorprion produced by ejecta itself. Simulations of late time ($t > 400$ d) H$alpha$ suggest that, apart from the dust in the cool dense shell, a significant amount of dust must form in the unshocked supernova ejecta. The supernova radius predicted by the interaction model coincides with the radius of the dusty shell recovered from late time (> 460 days) infrared data, which strongly support that infrared radiation indeed originates from supernova. The ejecta dust is presumably locked in opaque blobs.
While interaction with circumstellar material is known to play an important role in Type IIn supernovae (SNe), analyses of the more common SNe IIP and IIL have not traditionally included interaction as a significant power source. However, recent camp aigns to observe SNe within days of explosion have revealed narrow emission lines of high-ionization species in the earliest spectra of luminous SNe II of all subclasses. These flash ionization features indicate the presence of a confined shell of material around the progenitor star. Here we present the first low-luminosity (LL) SN to show flash ionization features, SN 2016bkv. This SN peaked at $M_V = -16$ mag and has H{alpha} expansion velocities under 1350 km/s around maximum light, placing it at the faint/slow end of the distribution of SNe IIP (similar to SN 2005cs). The light-curve shape of SN 2016bkv is also extreme among SNe IIP. A very strong initial peak could indicate additional luminosity from circumstellar interaction. A very small fall from the plateau to the nickel tail indicates unusually large production of radioactive nickel compared to other LL SNe IIP. A comparison between nebular spectra of SN 2016bkv and models raises the possibility that SN 2016bkv is an electron-capture supernova.
We present optical and near-infrared photometry and spectroscopy of the Type IIn supernova (SN) 2014ab, obtained by the Carnegie Supernova Project II (CSP-II) and initiated immediately after its optical discovery. We also present mid-infrared photome try obtained by the Wide-field Infrared Survey Explorer (WISE) satellite extending from 56 days prior to the optical discovery to over 1600 days. The light curve of SN 2014ab evolves slowly, while the spectra exhibit strong emission features produced from the interaction between rapidly expanding ejecta and dense circumstellar matter. The light curve and spectral properties are very similar to those of SN 2010jl. The estimated mass-loss rate of the progenitor of SN 2014ab is of the order of 0.1 Msun/yr under the assumption of spherically symmetric circumstellar matter and steady mass loss. Although the mid-infrared luminosity increases due to emission from dust, which is characterized by a blackbody temperature close to the dust evaporation temperature (~ 2000 K), no clear signatures of in situ dust formation within the cold dense shell located behind the forward shock are observed in SN 2014ab in early phases. Mid-infrared emission of SN 2014ab may originate from pre-existing dust located within dense circumstellar matter that is heated by the SN shock or shock-driven radiation. Finally, for the benefit of the community, we also present in an Appendix five near-infrared spectra of SN 2010jl obtained between 450 to 1300 days post discovery.
139 - K. Maeda , T. Nozawa , D.K. Sahu 2013
Supernovae (SNe) have been proposed to be the main production sites of dust grains in the Universe. Our knowledge on their importance to dust production is, however, limited by observationally poor constraints on the nature and amount of dust particl es produced by individual SNe. In this paper, we present a spectrum covering optical through near-Infrared (NIR) light of the luminous Type IIn supernova (SN IIn) 2010jl around one and half years after the explosion. This unique data set reveals multiple signatures of newly formed dust particles. The NIR portion of the spectrum provides a rare example where thermal emission from newly formed hot dust grains is clearly detected. We determine the main population of the dust species to be carbon grains at a temperature of ~1,350 - 1,450K at this epoch. The mass of the dust grains is derived to be ~(7.5 - 8.5) x 10^{-4} Msun. Hydrogen emission lines show wavelength-dependent absorption, which provides a good estimate on the typical size of the newly formed dust grains (~0.1 micron, and most likely <~0.01 micron). We attribute the dust grains to have been formed in a dense cooling shell as a result of a strong SN-circumstellar media (CSM) interaction. The dust grains occupy ~10% of the emitting volume, suggesting an inhomogeneous, clumpy structure. The average CSM density is required to be >~3 x 10^{7} cm^{-3}, corresponding to a mass loss rate of >~0.02 Msun yr^{-1} (for a mass loss wind velocity of ~100 km s^{-1}). This strongly supports a scenario that SN 2010jl and probably other luminous SNe IIn are powered by strong interactions within very dense CSM, perhaps created by Luminous Blue Variable (LBV)-like eruptions within the last century before the explosion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا