ترغب بنشر مسار تعليمي؟ اضغط هنا

The Carnegie Supernova Project II. Observations of SN 2014ab possibly revealing a 2010jl-like SN IIn with pre-existing dust

76   0   0.0 ( 0 )
 نشر من قبل Takashi J. Moriya
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical and near-infrared photometry and spectroscopy of the Type IIn supernova (SN) 2014ab, obtained by the Carnegie Supernova Project II (CSP-II) and initiated immediately after its optical discovery. We also present mid-infrared photometry obtained by the Wide-field Infrared Survey Explorer (WISE) satellite extending from 56 days prior to the optical discovery to over 1600 days. The light curve of SN 2014ab evolves slowly, while the spectra exhibit strong emission features produced from the interaction between rapidly expanding ejecta and dense circumstellar matter. The light curve and spectral properties are very similar to those of SN 2010jl. The estimated mass-loss rate of the progenitor of SN 2014ab is of the order of 0.1 Msun/yr under the assumption of spherically symmetric circumstellar matter and steady mass loss. Although the mid-infrared luminosity increases due to emission from dust, which is characterized by a blackbody temperature close to the dust evaporation temperature (~ 2000 K), no clear signatures of in situ dust formation within the cold dense shell located behind the forward shock are observed in SN 2014ab in early phases. Mid-infrared emission of SN 2014ab may originate from pre-existing dust located within dense circumstellar matter that is heated by the SN shock or shock-driven radiation. Finally, for the benefit of the community, we also present in an Appendix five near-infrared spectra of SN 2010jl obtained between 450 to 1300 days post discovery.

قيم البحث

اقرأ أيضاً

We present photometry, spectra, and spectropolarimetry of supernova (SN) 2014ab, obtained through $sim 200$ days after peak brightness. SN 2014ab was a luminous Type IIn SN ($M_V < -19.14$ mag) discovered after peak brightness near the nucleus of its host galaxy, VV 306c. Prediscovery upper limits constrain the time of explosion to within 200 days prior to discovery. While SN 2014ab declined by $sim 1$ mag over the course of our observations, the observed spectrum remained remarkably unchanged. Spectra exhibit an asymmetric emission-line profile with a consistently stronger blueshifted component, suggesting the presence of dust or a lack of symmetry between the far side and near side of the SN. The Pa$beta$ emission line shows a profile very similar to that of H$alpha$, implying that this stronger blueshifted component is caused either through obscuration by large dust grains, occultation by optically thick material, or a lack of symmetry between the far side and near side of the interaction region. Despite these asymmetric line profiles, our spectropolarimetric data show that SN 2014ab has little detected polarization after accounting for the interstellar polarization. This suggests that we are seeing emission from a photosphere that has only small deviation from circular symmetry face-on. We are likely seeing a SN IIn with nearly circular symmetry in the plane normal to our line of sight, but with either large-grain dust or significant asymmetry in the density of circumstellar material or SN ejecta along our line of sight. We suggest that SN 2014ab and SN 2010jl (as well as other SNe IIn) may be similar events viewed from different directions.
A search for the progenitor of SN~2010jl, an unusually luminous core-collapse supernova of Type~IIn, using pre-explosion {it Hubble}/WFPC2 and {it Spitzer}/IRAC images of the region, yielded upper limits on the UV and near-infrared (IR) fluxes from a ny candidate star. These upper limits constrain the luminosity and effective temperature of the progenitor, the mass of any preexisting dust in its surrounding circumstellar medium (CSM), and dust proximity to the star. A {it lower} limit on the CSM dust mass is required to hide a luminous progenitor from detection by {it Hubble}. {it Upper} limits on the CSM dust mass and constraints on its proximity to the star are set by requiring that the absorbed and reradiated IR emission not exceed the IRAC upper limits. Using the combined extinction-IR emission constraints we present viable $M_d-R_1$ combinations, where $M_d$ and $R_1$ are the CSM dust mass and its inner radius. These depend on the CSM outer radius, dust composition and grain size, and the properties of the progenitor. The results constrain the pre-supernova evolution of the progenitor, and the nature and origin of the observed post-explosion IR emission from SN~2010jl. In particular, an $eta$~Car-type progenitor will require at least 4~mag of visual extinction to avoid detection by the {it Hubble}. This can be achieved with dust masses $gtrsim 10^{-3}$~msun (less than the estimated 0.2-0.5~msun around $eta$~Car) which must be located at distances of $gtrsim 10^{16}$~cm from the star to avoid detection by {it Spitzer}.
We present ultra-violet to mid-infrared observations of the long-lasting Type IIn supernova (SN) 2013L obtained by the Carnegie Supernova Project II (CSP-II). The spectra of SN 2013L are dominated by H emission features characterized by three compone nts attributed to different regions. A unique feature of this Type IIn SN is that the blue shifted line profile is dominated by the macroscopic velocity of the expanding shock wave of the SN. We are therefore able to trace the evolution of the shock velocity in the dense and partially opaque circumstellar medium (CSM), from $sim 4800~km~s^{-1}$ at +48 d, decreasing as $t^{-0.23}$ to $sim 2700~km~s^{-1}$ after a year. We perform spectral modeling of both the broad- and intermediate-velocity components of the H$alpha$ line profile. The high-velocity component is consistent with emission from a radially thin, spherical shell located behind the expanding shock with emission wings broadened by electron scattering. We propose that the intermediate component originates from pre-ionized gas from the unshocked dense CSM with the same velocity as the narrow component, $sim 100~km~s^{-1}$, but also broadened by electron scattering. The spectral energy distributions (SEDs) of SN 2013L after +132 d are well reproduced by a two-component black-body (BB) model. The circumstellar-interaction model of the bolometric light curve reveals a mass-loss rate history with large values ($1.7times 10^{-2} - 0.15~M_odot~yr^{-1}$) over the $sim $25 - 40 years before explosion. The drop in the light curve at $sim 350$ days and presence of electron scattering wings at late epochs indicate an anisotropic CSM. The mass-loss rate values and the unshocked CSM velocity are consistent with the characteristics of a massive star, such as a luminous blue variable (LBV) undergoing strong eruptions, similar to $eta$ Carina.
We present optical and near-infrared broadband photometry and optical spectra of AT 2014ej from the the Carnegie Supernova Project-II. These observations are complemented with data from the CHilean Automatic Supernova sEarch, the Public ESO Spectrosc opic Survey of Transient Objects, and from the Backyard Observatory Supernova Search. Observational signatures of AT 2014ej reveal that it is similar to other members of the gap-transient subclass known as luminous red novae (LRNe), including the ubiquitous double hump light curve and spectral properties akin to the LRN SN 2017jfs. A medium-dispersion, visual-wavelength spectrum of AT 2014ej taken the Magellan Clay telescope, exhibits a P Cygni H$alpha$ feature characterized by a blue velocity at zero intensity of $approx 110$ km s$^{-1}$ and a P Cygni minimum velocity of $approx70$ km s$^{-1}$, and which we attribute to emission from a circumstellar wind. Inspection of pre-outbust Hubble Space Telescope images yields no conclusive progenitor detection. In comparison with a sample of LRNe from the literature, AT 2014ej lies among the brighter end of the luminosity distribution. Comparison of the ultra-violet, optical, infrared (UVOIR) light curves of well-observed LRNe to common-envelope evolution models from the literature, indicates the models under predict the luminosity of the comparison sample at all phases and also produce inconsistent time-scales of the secondary peak. Future efforts to model LRNe should expand upon the current parameter space explored and therefore may consider more massive systems and a wider range of dynamical timescales.
103 - M. D. Stritzinger 2020
We present multi-wavelength observations of two gap transients followed by the Carnegie Supernova Project-II and supplemented with data obtained by a number of different programs. Here in the first of two papers, we focus on the intermediate luminosi ty red transient (ILRT) designated SNhunt120, while in a companion paper we examine the luminous red novae AT 2014ej. Our data set for SNhunt120 consists of an early optical discovery, estimated to be within 3 days after outburst, the subsequent optical and near-infrared broadband followup extending over a $sim$2 month period, two visual- and two near-infrared wavelength spectra, and Spitzer Space Telescope observations extending from early ($+$28 d) to late ($+$1155 d) phases. SNhunt120 resembles other ILRTs such as NGC 300-2008-OT and SN 2008S, and like these other ILRTs, SNhunt120 exhibits prevalent mid-infrared emission at both early and late phases. From the comparison of SNhunt120 and other ILRTs to electron-capture supernova simulations, we find that the current models underestimate the explosion kinetic energy and thereby produce synthetic light curves that over-estimate the luminosity. Finally, examination of pre-outburst Hubble Space Telescope images yields no progenitor detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا