ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic Blueshift of Line Profiles in the Type IIn Supernova 2010jl: Evidence for Post-Shock Dust Formation?

75   0   0.0 ( 0 )
 نشر من قبل Nathan Smith
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Type IIn SNe show spectral evidence for strong interaction between their blast wave and dense circumstellar material (CSM) around the progenitor star. SN2010jl was the brightest core-collapse SN in 2010, and it was a Type IIn explosion with strong CSM interaction. Andrews et al. recently reported evidence for an IR excess in SN2010jl, indicating either new dust formation or the heating of CSM dust in an IR echo. Here we report multi-epoch spectra of SN2010jl that reveal the tell-tale signature of new dust formation: emission-line profiles becoming systematically more blueshifted as the red side of the line is blocked by increasing extinction. The effect is seen clearly in the intermediate-width (400--4000 km/s) component of H$alpha$ beginning roughly 30d after explosion. Moreover, we present near-IR spectra demonstrating that the asymmetry in the hydrogen-line profiles is wavelength dependent, appearing more pronounced at shorter wavelengths. This evidence suggests that new dust grains had formed quickly in the post-shock shell of SN 2010jl arising from CSM interaction. Since the observed dust temperature has been attributed to an IR echo and not to new dust, either (1) IR excess emission at $lambda < 5 mu$m is not a particularly sensitive tracer of new dust formation in SNe, or (2) some assumptions about expected dust temperatures might require further study. Lastly, we discuss one possible mechanism other than dust that might lead to increasingly blueshifted line profiles in SNeIIn, although the wavelength dependence of the asymmetry argues against this hypothesis in the case of SN2010jl.

قيم البحث

اقرأ أيضاً

81 - K. Maeda , T. Nozawa , D.K. Sahu 2013
Supernovae (SNe) have been proposed to be the main production sites of dust grains in the Universe. Our knowledge on their importance to dust production is, however, limited by observationally poor constraints on the nature and amount of dust particl es produced by individual SNe. In this paper, we present a spectrum covering optical through near-Infrared (NIR) light of the luminous Type IIn supernova (SN IIn) 2010jl around one and half years after the explosion. This unique data set reveals multiple signatures of newly formed dust particles. The NIR portion of the spectrum provides a rare example where thermal emission from newly formed hot dust grains is clearly detected. We determine the main population of the dust species to be carbon grains at a temperature of ~1,350 - 1,450K at this epoch. The mass of the dust grains is derived to be ~(7.5 - 8.5) x 10^{-4} Msun. Hydrogen emission lines show wavelength-dependent absorption, which provides a good estimate on the typical size of the newly formed dust grains (~0.1 micron, and most likely <~0.01 micron). We attribute the dust grains to have been formed in a dense cooling shell as a result of a strong SN-circumstellar media (CSM) interaction. The dust grains occupy ~10% of the emitting volume, suggesting an inhomogeneous, clumpy structure. The average CSM density is required to be >~3 x 10^{7} cm^{-3}, corresponding to a mass loss rate of >~0.02 Msun yr^{-1} (for a mass loss wind velocity of ~100 km s^{-1}). This strongly supports a scenario that SN 2010jl and probably other luminous SNe IIn are powered by strong interactions within very dense CSM, perhaps created by Luminous Blue Variable (LBV)-like eruptions within the last century before the explosion.
80 - Nikolai N. Chugai 2018
I explore signatures of a possible dust formation in the late SN~2010jl that could be imprinted in the line blueshift and the radius evolution of the dusty infrared-emitting shell. I propose a simple model that permits one to reproduce emission lines of blueshifted hydrogen and helium emission lines. The model suggests that the hydrogen emission originates primarily from shocked fragmented circumstellar clumps partially obscured by the absorbing cool dense shell and by unshocked ejecta. In the He I 1.083 $mu$m line on day 178 this component is significantly weaker compared to broad component from unshocked ejecta that is obscured by the absorprion produced by ejecta itself. Simulations of late time ($t > 400$ d) H$alpha$ suggest that, apart from the dust in the cool dense shell, a significant amount of dust must form in the unshocked supernova ejecta. The supernova radius predicted by the interaction model coincides with the radius of the dusty shell recovered from late time (> 460 days) infrared data, which strongly support that infrared radiation indeed originates from supernova. The ejecta dust is presumably locked in opaque blobs.
SN2017hcc was remarkable for being a nearby and strongly polarized superluminous TypeIIn supernova (SN). We obtained high-resolution echelle spectra that we combine with other spectra to investigate its line profile evolution. All epochs reveal narro w P~Cygni components from pre-shock circumstellar material (CSM), indicating an axisymmetric outflow from the progenitor of 40-50 km/s. Intermediate-width and broad components exhibit the classic evolution seen in luminous SNe~IIn: symmetric Lorentzian profiles from pre-shock CSM lines broadened by electron scattering at early times, transitioning at late times to multi-component, irregular profiles coming from the SN ejecta and post-shock shell. As in many SNe~IIn, profiles show a progressively increasing blueshift, with a clear flux deficit in red wings of the intermediate and broad velocity components after day 200. This blueshift develops after the continuum luminosity fades, and in the intermediate-width component, persists at late times even after the SN ejecta fade. In SN2017hcc, the blueshift cannot be explained as occultation by the SN photosphere, pre-shock acceleration of CSM, or a lopsided explosion or CSM. Instead, the blueshift arises from dust formation in the post-shock shell and in the SN ejecta. The effect has a wavelength dependence characteristic of dust, exhibiting an extinction law consistent with large grains. Thus, SN2017hcc experienced post-shock dust formation and had a mildly bipolar CSM shell, similar to SN2010jl. Like other superluminous SNeIIn, the progenitor lost around 10Msun due to extreme eruptive mass loss in the decade before exploding.
The Type IIn supernovae (SNe IIn) have been found to be associated with significant amounts of dust. These core-collapse events are generally expected to be the final stage in the evolution of highly-massive stars, either while in an extreme red supe rgiant phase or during a luminous blue variable phase. Both evolutionary scenarios involve substantial pre-supernova mass loss. I have analyzed the SN IIn 1995N in MCG -02-38-017 (Arp 261), for which mid-infrared archival data obtained with the Spitzer Space Telescope in 2009 (~14.7 yr after explosion) and with the Wide-field Infrared Survey Explorer (WISE) in 2010 (~15.6--16.0 yr after explosion) reveal a luminous (~2e7 L_sun) source detected from 3.4 to 24 micron. These observations probe the circumstellar material, set up by pre-SN mass loss, around the progenitor star and indicate the presence of ~0.05--0.12 M_sun of pre-existing, cool dust at ~240 K. This is at least a factor ~10 lower than the dust mass required to be produced from SNe at high redshift, but the case of SN 1995N lends further evidence that highly massive stars could themselves be important sources of dust.
We present optical and near-infrared photometry and spectroscopy of the Type IIn supernova (SN) 2014ab, obtained by the Carnegie Supernova Project II (CSP-II) and initiated immediately after its optical discovery. We also present mid-infrared photome try obtained by the Wide-field Infrared Survey Explorer (WISE) satellite extending from 56 days prior to the optical discovery to over 1600 days. The light curve of SN 2014ab evolves slowly, while the spectra exhibit strong emission features produced from the interaction between rapidly expanding ejecta and dense circumstellar matter. The light curve and spectral properties are very similar to those of SN 2010jl. The estimated mass-loss rate of the progenitor of SN 2014ab is of the order of 0.1 Msun/yr under the assumption of spherically symmetric circumstellar matter and steady mass loss. Although the mid-infrared luminosity increases due to emission from dust, which is characterized by a blackbody temperature close to the dust evaporation temperature (~ 2000 K), no clear signatures of in situ dust formation within the cold dense shell located behind the forward shock are observed in SN 2014ab in early phases. Mid-infrared emission of SN 2014ab may originate from pre-existing dust located within dense circumstellar matter that is heated by the SN shock or shock-driven radiation. Finally, for the benefit of the community, we also present in an Appendix five near-infrared spectra of SN 2010jl obtained between 450 to 1300 days post discovery.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا