ترغب بنشر مسار تعليمي؟ اضغط هنا

The long-lived Type IIn SN 2015da: Infrared echoes and strong interaction within an extended massive shell

125   0   0.0 ( 0 )
 نشر من قبل Leonardo Tartaglia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we report the results of the first $sim$four years of spectroscopic and photometric monitoring of the Type IIn supernova SN 2015da (also known as PSN J13522411+3941286, or iPTF16tu). The supernova exploded in the nearby spiral galaxy NGC 5337 in a relatively highly extinguished environment. The transient showed prominent narrow Balmer lines in emission at all times and a slow rise to maximum in all bands. In addition, early observations performed by amateur astronomers give a very well-constrained explosion epoch. The observables are consistent with continuous interaction between the supernova ejecta and a dense and extended H-rich circumstellar medium. The presence of such an extended and dense medium is difficult to reconcile with standard stellar evolution models, since the metallicity at the position of SN 2015da seems to be slightly subsolar. Interaction is likely the mechanism powering the light curve, as confirmed by the analysis of the pseudo bolometric light curve, which gives a total radiated energy $gtrsim10^{51},rm{erg}$. Modeling the light curve in the context of a supernova shock breakout through a dense circumstellar medium allowed us to infer the mass of the prexisting gas to be $simeq8,rm{M_{odot}}$, with an extreme mass-loss rate for the progenitor star $simeq0.6,rm{M_{odot}},rm{yr^{-1}}$, suggesting that most of the circumstellar gas was produced during multiple eruptive events. Near- and mid-infrared observations reveal a flux excess in these domains, similar to those observed in SN 2010jl and other interacting transients, likely due to preexisting radiatively heated dust surrounding the supernova. By modeling the infrared excess, we infer a mass $gtrsim0.4times10^{-3},rm{M_{odot}}$ for the dust.

قيم البحث

اقرأ أيضاً

80 - Nikolai N. Chugai 2018
I explore signatures of a possible dust formation in the late SN~2010jl that could be imprinted in the line blueshift and the radius evolution of the dusty infrared-emitting shell. I propose a simple model that permits one to reproduce emission lines of blueshifted hydrogen and helium emission lines. The model suggests that the hydrogen emission originates primarily from shocked fragmented circumstellar clumps partially obscured by the absorbing cool dense shell and by unshocked ejecta. In the He I 1.083 $mu$m line on day 178 this component is significantly weaker compared to broad component from unshocked ejecta that is obscured by the absorprion produced by ejecta itself. Simulations of late time ($t > 400$ d) H$alpha$ suggest that, apart from the dust in the cool dense shell, a significant amount of dust must form in the unshocked supernova ejecta. The supernova radius predicted by the interaction model coincides with the radius of the dusty shell recovered from late time (> 460 days) infrared data, which strongly support that infrared radiation indeed originates from supernova. The ejecta dust is presumably locked in opaque blobs.
While interaction with circumstellar material is known to play an important role in Type IIn supernovae (SNe), analyses of the more common SNe IIP and IIL have not traditionally included interaction as a significant power source. However, recent camp aigns to observe SNe within days of explosion have revealed narrow emission lines of high-ionization species in the earliest spectra of luminous SNe II of all subclasses. These flash ionization features indicate the presence of a confined shell of material around the progenitor star. Here we present the first low-luminosity (LL) SN to show flash ionization features, SN 2016bkv. This SN peaked at $M_V = -16$ mag and has H{alpha} expansion velocities under 1350 km/s around maximum light, placing it at the faint/slow end of the distribution of SNe IIP (similar to SN 2005cs). The light-curve shape of SN 2016bkv is also extreme among SNe IIP. A very strong initial peak could indicate additional luminosity from circumstellar interaction. A very small fall from the plateau to the nickel tail indicates unusually large production of radioactive nickel compared to other LL SNe IIP. A comparison between nebular spectra of SN 2016bkv and models raises the possibility that SN 2016bkv is an electron-capture supernova.
We present the photometric and spectroscopic evolution of the type IIn SN 1995G in NGC 1643, on the basis of 4 years of optical and infrared observations. This supernova shows very flat optical light curves similar to SN 1988Z, with a slow decline ra te at all times. The spectra are characterized by strong Balmer lines with multiple components in emission and with a P-Cygni absorption component blueshifted by only 700 km/s. This feature indicates the presence of a slowly expanding shell above the SN ejecta as in the case of SNe 1994aj and 1996L. As in other SNe IIn the slow luminosity decline cannot be explained only with a radioactive energy input and an additional source of energy is required, most likely that produced by the interaction between supernova ejecta and a pre--existent circumstellar medium. It was estimated that the shell material has a density n(H) >> 10^8 cm^-3, consistent with the absence of forbidden lines in the spectra. About 2 years after the burst the low velocity shell is largely overtaken by the SN ejecta and the luminosity drops at a faster rate.
HST and ground based observations of the Type IIn SN 2010jl are analyzed, including photometry, spectroscopy in the ultraviolet, optical and NIR bands, 26-1128 days after first detection. At maximum the bolometric luminosity was $sim 3times10^{43}$ e rg/s and even at 850 days exceeds $10^{42}$ erg/s. A NIR excess, dominating after 400 days, probably originates in dust in the circumstellar medium (CSM). The total radiated energy is $> 6.5times10^{50}$ ergs, excluding the dust component. The spectral lines can be separated into one broad component due to electron scattering, and one narrow with expansion velocity $sim 100$ km/s from the CSM. The broad component is initially symmetric around zero velocity but becomes blueshifted after $sim 50$ days, while remaining symmetric about a shifted centroid velocity. Dust absorption in the ejecta is unlikely to explain the line shifts, and we attribute the shift instead to acceleration by the SN radiation. From the optical lines and the X-ray and dust properties, there is strong evidence for large scale asymmetries in the CSM. The ultraviolet lines indicate CNO processing in the progenitor, while the optical shows a number of narrow coronal lines excited by the X-rays. The bolometric light curve is consistent with a radiative shock in an $r^{-2}$ CSM with a mass loss rate of $sim 0.1$ M_sun/yr. The total mass lost is $> 3$ M_sun. These properties are consistent with the SN expanding into a CSM characteristic of an LBV progenitor with a bipolar geometry. The apparent absence of nuclear processing is attributed to a CSM still opaque to electron scattering.
The Type IIn supernova (SN) 2005ip is one of the most well-studied and long-lasting examples of a SN interacting with its circumstellar environment. The optical light curve plateaued at a nearly constant level for more than five years, suggesting ong oing shock interaction with an extended and clumpy circumstellar medium (CSM). Here we present continued observations of the SN from $sim 1000-5000$ days post-explosion at all wavelengths, including X-ray, ultraviolet, near-infrared, and mid-infrared. The UV spectra probe the pre-explosion mass loss and show evidence for CNO processing. From the bolometric light curve, we find that the total radiated energy is in excess of $10^{50}$ erg, the progenitor stars pre-explosion mass-loss rate was $gtrsim 1 times 10^{-2},{rm M_{odot}~ yr}^{-1}$, and the total mass lost shortly before explosion was $gtrsim 1,{rm M_odot}$, though the mass lost could have been considerably larger depending on the efficiency for the conversion of kinetic energy to radiation. The ultraviolet through near-infrared spectrum is characterised by two high density components, one with narrow high-ionisation lines, and one with broader low-ionisation H I, He I, [O I], Mg II, and Fe II lines. The rich Fe II spectrum is strongly affected by Ly$alpha$ fluorescence, consistent with spectral modeling. Both the Balmer and He I lines indicate a decreasing CSM density during the late interaction period. We find similarities to SN 1988Z, which shows a comparable change in spectrum at around the same time during its very slow decline. These results suggest that, at long last, the shock interaction in SN 2005ip may finally be on the decline.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا