ﻻ يوجد ملخص باللغة العربية
Deep neural networks are currently among the most commonly used classifiers. Despite easily achieving very good performance, one of the best selling points of these models is their modular design - one can conveniently adapt their architecture to specific needs, change connectivity patterns, attach specialised layers, experiment with a large amount of activation functions, normalisation schemes and many others. While one can find impressively wide spread of various configurations of almost every aspect of the deep nets, one element is, in authors opinion, underrepresented - while solving classification problems, vast majority of papers and applications simply use log loss. In this paper we try to investigate how particular choices of loss functions affect deep models and their learning dynamics, as well as resulting classifiers robustness to various effects. We perform experiments on classical datasets, as well as provide some additional, theoretical insights into the problem. In particular we show that L1 and L2 losses are, quite surprisingly, justified classification objectives for deep nets, by providing probabilistic interpretation in terms of expected misclassification. We also introduce two losses which are not typically used as deep nets objectives and show that they are viable alternatives to the existing ones.
Deep convolutional neural networks (CNNs) have been actively adopted in the field of music information retrieval, e.g. genre classification, mood detection, and chord recognition. However, the process of learning and prediction is little understood,
Miscalibration - a mismatch between a models confidence and its correctness - of Deep Neural Networks (DNNs) makes their predictions hard to rely on. Ideally, we want networks to be accurate, calibrated and confident. We show that, as opposed to the
A Deep Neural Network is applied to classify physical signatures obtained from physical sensor measurements of running gasoline and diesel-powered vehicles and other devices. The classification provides information on the target identities as to vehi
Understanding the structure of loss landscape of deep neural networks (DNNs)is obviously important. In this work, we prove an embedding principle that the loss landscape of a DNN contains all the critical points of all the narrower DNNs. More precise
In this paper, we investigate data-driven parameterized modeling of insertion loss for transmission lines with respect to design parameters. We first show that direct application of neural networks can lead to non-physics models with negative inserti