ﻻ يوجد ملخص باللغة العربية
Understanding the structure of loss landscape of deep neural networks (DNNs)is obviously important. In this work, we prove an embedding principle that the loss landscape of a DNN contains all the critical points of all the narrower DNNs. More precisely, we propose a critical embedding such that any critical point, e.g., local or global minima, of a narrower DNN can be embedded to a critical point/hyperplane of the target DNN with higher degeneracy and preserving the DNN output function. The embedding structure of critical points is independent of loss function and training data, showing a stark difference from other nonconvex problems such as protein-folding. Empirically, we find that a wide DNN is often attracted by highly-degenerate critical points that are embedded from narrow DNNs. The embedding principle provides an explanation for the general easy optimization of wide DNNs and unravels a potential implicit low-complexity regularization during the training. Overall, our work provides a skeleton for the study of loss landscape of DNNs and its implication, by which a more exact and comprehensive understanding can be anticipated in the near
The work Loss Landscape Sightseeing with Multi-Point Optimization (Skorokhodov and Burtsev, 2019) demonstrated that one can empirically find arbitrary 2D binary patterns inside loss surfaces of popular neural networks. In this paper we prove that: (i
The theoretical analysis of deep neural networks (DNN) is arguably among the most challenging research directions in machine learning (ML) right now, as it requires from scientists to lay novel statistical learning foundations to explain their behavi
In suitably initialized wide networks, small learning rates transform deep neural networks (DNNs) into neural tangent kernel (NTK) machines, whose training dynamics is well-approximated by a linear weight expansion of the network at initialization. S
We study how permutation symmetries in overparameterized multi-layer neural networks generate `symmetry-induced critical points. Assuming a network with $ L $ layers of minimal widths $ r_1^*, ldots, r_{L-1}^* $ reaches a zero-loss minimum at $ r_1^*
The evolution of a deep neural network trained by the gradient descent can be described by its neural tangent kernel (NTK) as introduced in [20], where it was proven that in the infinite width limit the NTK converges to an explicit limiting kernel an