ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics-Enforced Modeling for Insertion Loss of Transmission Lines by Deep Neural Networks

77   0   0.0 ( 0 )
 نشر من قبل Liang Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate data-driven parameterized modeling of insertion loss for transmission lines with respect to design parameters. We first show that direct application of neural networks can lead to non-physics models with negative insertion loss. To mitigate this problem, we propose two deep learning solutions. One solution is to add a regulation term, which represents the passive condition, to the final loss function to enforce the negative quantity of insertion loss. In the second method, a third-order polynomial expression is defined first, which ensures positiveness, to approximate the insertion loss, then DeepONet neural network structure, which was proposed recently for function and system modeling, was employed to model the coefficients of polynomials. The resulting neural network is applied to predict the coefficients of the polynomial expression. The experimental results on an open-sourced SI/PI database of a PCB design show that both methods can ensure the positiveness for the insertion loss. Furthermore, both methods can achieve similar prediction results, while the polynomial-based DeepONet method is faster than DeepONet based method in training time.



قيم البحث

اقرأ أيضاً

Recently, researchers have utilized neural networks to accurately solve partial differential equations (PDEs), enabling the mesh-free method for scientific computation. Unfortunately, the network performance drops when encountering a high nonlinearit y domain. To improve the generalizability, we introduce the novel approach of employing multi-task learning techniques, the uncertainty-weighting loss and the gradients surgery, in the context of learning PDE solutions. The multi-task scheme exploits the benefits of learning shared representations, controlled by cross-stitch modules, between multiple related PDEs, which are obtainable by varying the PDE parameterization coefficients, to generalize better on the original PDE. Encouraging the network pay closer attention to the high nonlinearity domain regions that are more challenging to learn, we also propose adversarial training for generating supplementary high-loss samples, similarly distributed to the original training distribution. In the experiments, our proposed methods are found to be effective and reduce the error on the unseen data points as compared to the previous approaches in various PDE examples, including high-dimensional stochastic PDEs.
91 - Yunfei Yang , Zhen Li , Yang Wang 2020
We study the expressive power of deep ReLU neural networks for approximating functions in dilated shift-invariant spaces, which are widely used in signal processing, image processing, communications and so on. Approximation error bounds are estimated with respect to the width and depth of neural networks. The network construction is based on the bit extraction and data-fitting capacity of deep neural networks. As applications of our main results, the approximation rates of classical function spaces such as Sobolev spaces and Besov spaces are obtained. We also give lower bounds of the $L^p (1le p le infty)$ approximation error for Sobolev spaces, which show that our construction of neural network is asymptotically optimal up to a logarithmic factor.
433 - Didier Lucor 2021
Recent works have explored the potential of machine learning as data-driven turbulence closures for RANS and LES techniques. Beyond these advances, the high expressivity and agility of physics-informed neural networks (PINNs) make them promising cand idates for full fluid flow PDE modeling. An important question is whether this new paradigm, exempt from the traditional notion of discretization of the underlying operators very much connected to the flow scales resolution, is capable of sustaining high levels of turbulence characterized by multi-scale features? We investigate the use of PINNs surrogate modeling for turbulent Rayleigh-B{e}nard (RB) convection flows in rough and smooth rectangular cavities, mainly relying on DNS temperature data from the fluid bulk. We carefully quantify the computational requirements under which the formulation is capable of accurately recovering the flow hidden quantities. We then propose a new padding technique to distribute some of the scattered coordinates-at which PDE residuals are minimized-around the region of labeled data acquisition. We show how it comes to play as a regularization close to the training boundaries which are zones of poor accuracy for standard PINNs and results in a noticeable global accuracy improvement at iso-budget. Finally, we propose for the first time to relax the incompressibility condition in such a way that it drastically benefits the optimization search and results in a much improved convergence of the composite loss function. The RB results obtained at high Rayleigh number Ra = 2 $bullet$ 10 9 are particularly impressive: the predictive accuracy of the surrogate over the entire half a billion DNS coordinates yields errors for all flow variables ranging between [0.3% -- 4%] in the relative L 2 norm, with a training relying only on 1.6% of the DNS data points.
We introduce the concept of a Graph-Informed Neural Network (GINN), a hybrid approach combining deep learning with probabilistic graphical models (PGMs) that acts as a surrogate for physics-based representations of multiscale and multiphysics systems . GINNs address the twin challenges of removing intrinsic computational bottlenecks in physics-based models and generating large data sets for estimating probability distributions of quantities of interest (QoIs) with a high degree of confidence. Both the selection of the complex physics learned by the NN and its supervised learning/prediction are informed by the PGM, which includes the formulation of structured priors for tunable control variables (CVs) to account for their mutual correlations and ensure physically sound CV and QoI distributions. GINNs accelerate the prediction of QoIs essential for simulation-based decision-making where generating sufficient sample data using physics-based models alone is often prohibitively expensive. Using a real-world application grounded in supercapacitor-based energy storage, we describe the construction of GINNs from a Bayesian network-embedded homogenized model for supercapacitor dynamics, and demonstrate their ability to produce kernel density estimates of relevant non-Gaussian, skewed QoIs with tight confidence intervals.
257 - Zhiyan Ding , Shi Chen , Qin Li 2021
Finding parameters in a deep neural network (NN) that fit training data is a nonconvex optimization problem, but a basic first-order optimization method (gradient descent) finds a global solution with perfect fit in many practical situations. We exam ine this phenomenon for the case of Residual Neural Networks (ResNet) with smooth activation functions in a limiting regime in which both the number of layers (depth) and the number of neurons in each layer (width) go to infinity. First, we use a mean-field-limit argument to prove that the gradient descent for parameter training becomes a partial differential equation (PDE) that characterizes gradient flow for a probability distribution in the large-NN limit. Next, we show that the solution to the PDE converges in the training time to a zero-loss solution. Together, these results imply that training of the ResNet also gives a near-zero loss if the Resnet is large enough. We give estimates of the depth and width needed to reduce the loss below a given threshold, with high probability.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا