ترغب بنشر مسار تعليمي؟ اضغط هنا

Explaining Deep Convolutional Neural Networks on Music Classification

83   0   0.0 ( 0 )
 نشر من قبل Keunwoo Choi Mr
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep convolutional neural networks (CNNs) have been actively adopted in the field of music information retrieval, e.g. genre classification, mood detection, and chord recognition. However, the process of learning and prediction is little understood, particularly when it is applied to spectrograms. We introduce auralisation of a CNN to understand its underlying mechanism, which is based on a deconvolution procedure introduced in [2]. Auralisation of a CNN is converting the learned convolutional features that are obtained from deconvolution into audio signals. In the experiments and discussions, we explain trained features of a 5-layer CNN based on the deconvolved spectrograms and auralised signals. The pairwise correlations per layers with varying different musical attributes are also investigated to understand the evolution of the learnt features. It is shown that in the deep layers, the features are learnt to capture textures, the patterns of continuous distributions, rather than shapes of lines.



قيم البحث

اقرأ أيضاً

We introduce a convolutional recurrent neural network (CRNN) for music tagging. CRNNs take advantage of convolutional neural networks (CNNs) for local feature extraction and recurrent neural networks for temporal summarisation of the extracted featur es. We compare CRNN with three CNN structures that have been used for music tagging while controlling the number of parameters with respect to their performance and training time per sample. Overall, we found that CRNNs show a strong performance with respect to the number of parameter and training time, indicating the effectiveness of its hybrid structure in music feature extraction and feature summarisation.
Deep neural networks (DNN) have been successfully applied to music classification including music tagging. However, there are several open questions regarding the training, evaluation, and analysis of DNNs. In this article, we investigate specific as pects of neural networks, the effects of noisy labels, to deepen our understanding of their properties. We analyse and (re-)validate a large music tagging dataset to investigate the reliability of training and evaluation. Using a trained network, we compute label vector similarities which is compared to groundtruth similarity. The results highlight several important aspects of music tagging and neural networks. We show that networks can be effective despite relatively large error rates in groundtruth datasets, while conjecturing that label noise can be the cause of varying tag-wise performance differences. Lastly, the analysis of our trained network provides valuable insight into the relationships between music tags. These results highlight the benefit of using data-driven methods to address automatic music tagging.
163 - Jongpil Lee , Juhan Nam 2017
Music tag words that describe music audio by text have different levels of abstraction. Taking this issue into account, we propose a music classification approach that aggregates multi-level and multi-scale features using pre-trained feature extracto rs. In particular, the feature extractors are trained in sample-level deep convolutional neural networks using raw waveforms. We show that this approach achieves state-of-the-art results on several music classification datasets.
Deep neural networks can suffer from the exploding and vanishing activation problem, in which the networks fail to train properly because the neural signals either amplify or attenuate across the layers and become saturated. While other normalization methods aim to fix the stated problem, most of them have inference speed penalties in those applications that require running averages of the neural activations. Here we extend the unitary framework based on Lie algebra to neural networks of any dimensionalities, overcoming the major constraints of the prior arts that limit synaptic weights to be square matrices. Our proposed unitary convolutional neural networks deliver up to 32% faster inference speeds and up to 50% reduction in permanent hard disk space while maintaining competitive prediction accuracy.
Recently, the end-to-end approach that learns hierarchical representations from raw data using deep convolutional neural networks has been successfully explored in the image, text and speech domains. This approach was applied to musical signals as we ll but has been not fully explored yet. To this end, we propose sample-level deep convolutional neural networks which learn representations from very small grains of waveforms (e.g. 2 or 3 samples) beyond typical frame-level input representations. Our experiments show how deep architectures with sample-level filters improve the accuracy in music auto-tagging and they provide results comparable to previous state-of-the-art performances for the Magnatagatune dataset and Million Song Dataset. In addition, we visualize filters learned in a sample-level DCNN in each layer to identify hierarchically learned features and show that they are sensitive to log-scaled frequency along layer, such as mel-frequency spectrogram that is widely used in music classification systems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا