ﻻ يوجد ملخص باللغة العربية
We study the computational complexity of the Buttons & Scissors game and obtain sharp thresholds with respect to several parameters. Specifically we show that the game is NP-complete for $C = 2$ colors but polytime solvable for $C = 1$. Similarly the game is NP-complete if every color is used by at most $F = 4$ buttons but polytime solvable for $F leq 3$. We also consider restrictions on the board size, cut directions, and cut sizes. Finally, we introduce several natural two-play
Combinatorial Game Theory (CGT) is a branch of game theory that has developed almost independently from Economic Game Theory (EGT), and is concerned with deep mathematical properties of 2-player 0-sum games that are defined over various combinatorial
Nonlocality, one of the most remarkable aspects of quantum mechanics, is closely related to Bayesian game theory. Quantum mechanics can offer advantages to some Bayesian games, if the payoff functions are related to Bell inequalities in some way. Mos
We consider a scenario in which two reinforcement learning agents repeatedly play a matrix game against each other and update their parameters after each round. The agents decision-making is transparent to each other, which allows each agent to predi
In this paper we introduce novel algorithmic strategies for effciently playing two-player games in which the players have different or identical player roles. In the case of identical roles, the players compete for the same objective (that of winning
In 2002, Benjamin Jourdain and Claude Martini discovered that for a class of payoff functions, the pricing problem for American options can be reduced to pricing of European options for an appropriately associated payoff, all within a Black-Scholes f