ترغب بنشر مسار تعليمي؟ اضغط هنا

Bootstrap Model Aggregation for Distributed Statistical Learning

187   0   0.0 ( 0 )
 نشر من قبل Jun Han Mr
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

In distributed, or privacy-preserving learning, we are often given a set of probabilistic models estimated from different local repositories, and asked to combine them into a single model that gives efficient statistical estimation. A simple method is to linearly average the parameters of the local models, which, however, tends to be degenerate or not applicable on non-convex models, or models with different parameter dimensions. One more practical strategy is to generate bootstrap samples from the local models, and then learn a joint model based on the combined bootstrap set. Unfortunately, the bootstrap procedure introduces additional noise and can significantly deteriorate the performance. In this work, we propose two variance reduction methods to correct the bootstrap noise, including a weighted M-estimator that is both statistically efficient and practically powerful. Both theoretical and empirical analysis is provided to demonstrate our methods.

قيم البحث

اقرأ أيضاً

The recent emergence of reinforcement learning has created a demand for robust statistical inference methods for the parameter estimates computed using these algorithms. Existing methods for statistical inference in online learning are restricted to settings involving independently sampled observations, while existing statistical inference methods in reinforcement learning (RL) are limited to the batch setting. The online bootstrap is a flexible and efficient approach for statistical inference in linear stochastic approximation algorithms, but its efficacy in settings involving Markov noise, such as RL, has yet to be explored. In this paper, we study the use of the online bootstrap method for statistical inference in RL. In particular, we focus on the temporal difference (TD) learning and Gradient TD (GTD) learning algorithms, which are themselves special instances of linear stochastic approximation under Markov noise. The method is shown to be distributionally consistent for statistical inference in policy evaluation, and numerical experiments are included to demonstrate the effectiveness of this algorithm at statistical inference tasks across a range of real RL environments.
We consider the problem of aggregating models learned from sequestered, possibly heterogeneous datasets. Exploiting tools from Bayesian nonparametrics, we develop a general meta-modeling framework that learns shared global latent structures by identi fying correspondences among local model parameterizations. Our proposed framework is model-independent and is applicable to a wide range of model types. After verifying our approach on simulated data, we demonstrate its utility in aggregating Gaussian topic models, hierarchical Dirichlet process based hidden Markov models, and sparse Gaussian processes with applications spanning text summarization, motion capture analysis, and temperature forecasting.
267 - Ravi Ganti 2015
We consider the problem of learning convex aggregation of models, that is as good as the best convex aggregation, for the binary classification problem. Working in the stream based active learning setting, where the active learner has to make a decis ion on-the-fly, if it wants to query for the label of the point currently seen in the stream, we propose a stochastic-mirror descent algorithm, called SMD-AMA, with entropy regularization. We establish an excess risk bounds for the loss of the convex aggregate returned by SMD-AMA to be of the order of $Oleft(sqrt{frac{log(M)}{{T^{1-mu}}}}right)$, where $muin [0,1)$ is an algorithm dependent parameter, that trades-off the number of labels queried, and excess risk.
Communication efficiency and robustness are two major issues in modern distributed learning framework. This is due to the practical situations where some computing nodes may have limited communication power or may behave adversarial behaviors. To add ress the two issues simultaneously, this paper develops two communication-efficient and robust distributed learning algorithms for convex problems. Our motivation is based on surrogate likelihood framework and the median and trimmed mean operations. Particularly, the proposed algorithms are provably robust against Byzantine failures, and also achieve optimal statistical rates for strong convex losses and convex (non-smooth) penalties. For typical statistical models such as generalized linear models, our results show that statistical errors dominate optimization errors in finite iterations. Simulated and real data experiments are conducted to demonstrate the numerical performance of our algorithms.
We present a robust aggregation approach to make federated learning robust to settings when a fraction of the devices may be sending corrupted updates to the server. The proposed approach relies on a robust secure aggregation oracle based on the geom etric median, which returns a robust aggregate using a constant number of calls to a regular non-robust secure average oracle. The robust aggregation oracle is privacy-preserving, similar to the secure average oracle it builds upon. We provide experimental results of the proposed approach with linear models and deep networks for two tasks in computer vision and natural language processing. The robust aggregation approach is agnostic to the level of corruption; it outperforms the classical aggregation approach in terms of robustness when the level of corruption is high, while being competitive in the regime of low corruption.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا