ترغب بنشر مسار تعليمي؟ اضغط هنا

Active Model Aggregation via Stochastic Mirror Descent

319   0   0.0 ( 0 )
 نشر من قبل Ravi Ganti
 تاريخ النشر 2015
والبحث باللغة English
 تأليف Ravi Ganti




اسأل ChatGPT حول البحث

We consider the problem of learning convex aggregation of models, that is as good as the best convex aggregation, for the binary classification problem. Working in the stream based active learning setting, where the active learner has to make a decision on-the-fly, if it wants to query for the label of the point currently seen in the stream, we propose a stochastic-mirror descent algorithm, called SMD-AMA, with entropy regularization. We establish an excess risk bounds for the loss of the convex aggregate returned by SMD-AMA to be of the order of $Oleft(sqrt{frac{log(M)}{{T^{1-mu}}}}right)$, where $muin [0,1)$ is an algorithm dependent parameter, that trades-off the number of labels queried, and excess risk.



قيم البحث

اقرأ أيضاً

116 - Fan Wu , Patrick Rebeschini 2021
We study discrete-time mirror descent applied to the unregularized empirical risk in matrix sensing. In both the general case of rectangular matrices and the particular case of positive semidefinite matrices, a simple potential-based analysis in term s of the Bregman divergence allows us to establish convergence of mirror descent -- with different choices of the mirror maps -- to a matrix that, among all global minimizers of the empirical risk, minimizes a quantity explicitly related to the nuclear norm, the Frobenius norm, and the von Neumann entropy. In both cases, this characterization implies that mirror descent, a first-order algorithm minimizing the unregularized empirical risk, recovers low-rank matrices under the same set of assumptions that are sufficient to guarantee recovery for nuclear-norm minimization. When the sensing matrices are symmetric and commute, we show that gradient descent with full-rank factorized parametrization is a first-order approximation to mirror descent, in which case we obtain an explicit characterization of the implicit bias of gradient flow as a by-product.
We revisit the Blind Deconvolution problem with a focus on understanding its robustness and convergence properties. Provable robustness to noise and other perturbations is receiving recent interest in vision, from obtaining immunity to adversarial at tacks to assessing and describing failure modes of algorithms in mission critical applications. Further, many blind deconvolution methods based on deep architectures internally make use of or optimize the basic formulation, so a clearer understanding of how this sub-module behaves, when it can be solved, and what noise injection it can tolerate is a first order requirement. We derive new insights into the theoretical underpinnings of blind deconvolution. The algorithm that emerges has nice convergence guarantees and is provably robust in a sense we formalize in the paper. Interestingly, these technical results play out very well in practice, where on standard datasets our algorithm yields results competitive with or superior to the state of the art. Keywords: blind deconvolution, robust continuous optimization
186 - Jun Han , Qiang Liu 2016
In distributed, or privacy-preserving learning, we are often given a set of probabilistic models estimated from different local repositories, and asked to combine them into a single model that gives efficient statistical estimation. A simple method i s to linearly average the parameters of the local models, which, however, tends to be degenerate or not applicable on non-convex models, or models with different parameter dimensions. One more practical strategy is to generate bootstrap samples from the local models, and then learn a joint model based on the combined bootstrap set. Unfortunately, the bootstrap procedure introduces additional noise and can significantly deteriorate the performance. In this work, we propose two variance reduction methods to correct the bootstrap noise, including a weighted M-estimator that is both statistically efficient and practically powerful. Both theoretical and empirical analysis is provided to demonstrate our methods.
This work considers low-rank canonical polyadic decomposition (CPD) under a class of non-Euclidean loss functions that frequently arise in statistical machine learning and signal processing. These loss functions are often used for certain types of te nsor data, e.g., count and binary tensors, where the least squares loss is considered unnatural.Compared to the least squares loss, the non-Euclidean losses are generally more challenging to handle. Non-Euclidean CPD has attracted considerable interests and a number of prior works exist. However, pressing computational and theoretical challenges, such as scalability and convergence issues, still remain. This work offers a unified stochastic algorithmic framework for large-scale CPD decomposition under a variety of non-Euclidean loss functions. Our key contribution lies in a tensor fiber sampling strategy-based flexible stochastic mirror descent framework. Leveraging the sampling scheme and the multilinear algebraic structure of low-rank tensors, the proposed lightweight algorithm ensures global convergence to a stationary point under reasonable conditions. Numerical results show that our framework attains promising non-Euclidean CPD performance. The proposed framework also exhibits substantial computational savings compared to state-of-the-art methods.
We consider the problem of aggregating models learned from sequestered, possibly heterogeneous datasets. Exploiting tools from Bayesian nonparametrics, we develop a general meta-modeling framework that learns shared global latent structures by identi fying correspondences among local model parameterizations. Our proposed framework is model-independent and is applicable to a wide range of model types. After verifying our approach on simulated data, we demonstrate its utility in aggregating Gaussian topic models, hierarchical Dirichlet process based hidden Markov models, and sparse Gaussian processes with applications spanning text summarization, motion capture analysis, and temperature forecasting.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا