ترغب بنشر مسار تعليمي؟ اضغط هنا

Online Bootstrap Inference For Policy Evaluation in Reinforcement Learning

283   0   0.0 ( 0 )
 نشر من قبل Will Wei Sun
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent emergence of reinforcement learning has created a demand for robust statistical inference methods for the parameter estimates computed using these algorithms. Existing methods for statistical inference in online learning are restricted to settings involving independently sampled observations, while existing statistical inference methods in reinforcement learning (RL) are limited to the batch setting. The online bootstrap is a flexible and efficient approach for statistical inference in linear stochastic approximation algorithms, but its efficacy in settings involving Markov noise, such as RL, has yet to be explored. In this paper, we study the use of the online bootstrap method for statistical inference in RL. In particular, we focus on the temporal difference (TD) learning and Gradient TD (GTD) learning algorithms, which are themselves special instances of linear stochastic approximation under Markov noise. The method is shown to be distributionally consistent for statistical inference in policy evaluation, and numerical experiments are included to demonstrate the effectiveness of this algorithm at statistical inference tasks across a range of real RL environments.


قيم البحث

اقرأ أيضاً

While machine learning (ML) methods have received a lot of attention in recent years, these methods are primarily for prediction. Empirical researchers conducting policy evaluations are, on the other hand, pre-occupied with causal problems, trying to answer counterfactual questions: what would have happened in the absence of a policy? Because these counterfactuals can never be directly observed (described as the fundamental problem of causal inference) prediction tools from the ML literature cannot be readily used for causal inference. In the last decade, major innovations have taken place incorporating supervised ML tools into estimators for causal parameters such as the average treatment effect (ATE). This holds the promise of attenuating model misspecification issues, and increasing of transparency in model selection. One particularly mature strand of the literature include approaches that incorporate supervised ML approaches in the estimation of the ATE of a binary treatment, under the textit{unconfoundedness} and positivity assumptions (also known as exchangeability and overlap assumptions). This article reviews popular supervised machine learning algorithms, including the Super Learner. Then, some specific uses of machine learning for treatment effect estimation are introduced and illustrated, namely (1) to create balance among treated and control groups, (2) to estimate so-called nuisance models (e.g. the propensity score, or conditional expectations of the outcome) in semi-parametric estimators that target causal parameters (e.g. targeted maximum likelihood estimation or the double ML estimator), and (3) the use of machine learning for variable selection in situations with a high number of covariates.
152 - Botao Hao , Xiang Ji , Yaqi Duan 2021
Bootstrapping provides a flexible and effective approach for assessing the quality of batch reinforcement learning, yet its theoretical property is less understood. In this paper, we study the use of bootstrapping in off-policy evaluation (OPE), and in particular, we focus on the fitted Q-evaluation (FQE) that is known to be minimax-optimal in the tabular and linear-model cases. We propose a bootstrapping FQE method for inferring the distribution of the policy evaluation error and show that this method is asymptotically efficient and distributionally consistent for off-policy statistical inference. To overcome the computation limit of bootstrapping, we further adapt a subsampling procedure that improves the runtime by an order of magnitude. We numerically evaluate the bootrapping method in classical RL environments for confidence interval estimation, estimating the variance of off-policy evaluator, and estimating the correlation between multiple off-policy evaluators.
Offline Reinforcement Learning (RL) is a promising approach for learning optimal policies in environments where direct exploration is expensive or unfeasible. However, the adoption of such policies in practice is often challenging, as they are hard t o interpret within the application context, and lack measures of uncertainty for the learned policy value and its decisions. To overcome these issues, we propose an Expert-Supervised RL (ESRL) framework which uses uncertainty quantification for offline policy learning. In particular, we have three contributions: 1) the method can learn safe and optimal policies through hypothesis testing, 2) ESRL allows for different levels of risk averse implementations tailored to the application context, and finally, 3) we propose a way to interpret ESRLs policy at every state through posterior distributions, and use this framework to compute off-policy value function posteriors. We provide theoretical guarantees for our estimators and regret bounds consistent with Posterior Sampling for RL (PSRL). Sample efficiency of ESRL is independent of the chosen risk aversion threshold and quality of the behavior policy.
186 - Jun Han , Qiang Liu 2016
In distributed, or privacy-preserving learning, we are often given a set of probabilistic models estimated from different local repositories, and asked to combine them into a single model that gives efficient statistical estimation. A simple method i s to linearly average the parameters of the local models, which, however, tends to be degenerate or not applicable on non-convex models, or models with different parameter dimensions. One more practical strategy is to generate bootstrap samples from the local models, and then learn a joint model based on the combined bootstrap set. Unfortunately, the bootstrap procedure introduces additional noise and can significantly deteriorate the performance. In this work, we propose two variance reduction methods to correct the bootstrap noise, including a weighted M-estimator that is both statistically efficient and practically powerful. Both theoretical and empirical analysis is provided to demonstrate our methods.
In this paper we explore methods to exploit symmetries for ensuring sample efficiency in reinforcement learning (RL), this problem deserves ever increasing attention with the recent advances in the use of deep networks for complex RL tasks which requ ire large amount of training data. We introduce a novel method to detect symmetries using reward trails observed during episodic experience and prove its completeness. We also provide a framework to incorporate the discovered symmetries for functional approximation. Finally we show that the use of potential based reward shaping is especially effective for our symmetry exploitation mechanism. Experiments on various classical problems show that our method improves the learning performance significantly by utilizing symmetry information.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا