ﻻ يوجد ملخص باللغة العربية
We consider the problem of aggregating models learned from sequestered, possibly heterogeneous datasets. Exploiting tools from Bayesian nonparametrics, we develop a general meta-modeling framework that learns shared global latent structures by identifying correspondences among local model parameterizations. Our proposed framework is model-independent and is applicable to a wide range of model types. After verifying our approach on simulated data, we demonstrate its utility in aggregating Gaussian topic models, hierarchical Dirichlet process based hidden Markov models, and sparse Gaussian processes with applications spanning text summarization, motion capture analysis, and temperature forecasting.
In distributed, or privacy-preserving learning, we are often given a set of probabilistic models estimated from different local repositories, and asked to combine them into a single model that gives efficient statistical estimation. A simple method i
We consider the problem of learning convex aggregation of models, that is as good as the best convex aggregation, for the binary classification problem. Working in the stream based active learning setting, where the active learner has to make a decis
Production forecasting is a key step to design the future development of a reservoir. A classical way to generate such forecasts consists in simulating future production for numerical models representative of the reservoir. However, identifying such
Federated Learning (FL) makes a large amount of edge computing devices (e.g., mobile phones) jointly learn a global model without data sharing. In FL, data are generated in a decentralized manner with high heterogeneity. This paper studies how to per
The standard way to estimate the parameters $Theta_text{SEIR}$ (e.g., the transmission rate $beta$) of an SEIR model is to use grid search, where simulations are performed on each set of parameters, and the parameter set leading to the least $L_2$ di