ﻻ يوجد ملخص باللغة العربية
The inherent asymmetry of the electric transport in graphene is attributed to Klein tunneling across barriers defined by $textit{pn}$-interfaces between positively and negatively charged regions. By combining conductance and shot noise experiments we determine the main characteristics of the tunneling barrier (height and slope) in a high-quality suspended sample with Au/Cr/Au contacts. We observe an asymmetric resistance $R_{textrm{odd}}=100-70$ $Omega$ across the Dirac point of the suspended graphene at carrier density $|n_{rm G}|=0.3-4 cdot 10^{11}$ cm$^{-2}$, while the Fano factor displays a non-monotonic asymmetry in the range $F_{textrm{odd}} sim 0.03 - 0.1$. Our findings agree with analytical calculations based on the Dirac equation with a trapezoidal barrier. Comparison between the model and the data yields the barrier height for tunneling, an estimate of the thickness of the $textit{pn}$-interface $d < 20$ nm, and the contact region doping corresponding to a Fermi level offset of $sim - 18$ meV. The strength of pinning of the Fermi level under the metallic contact is characterized in terms of the contact capacitance $C_c=19 times 10^{-6}$ F/cm$^2$. Additionally, we show that the gate voltage corresponding to the Dirac point is given by the work function difference between the backgate material and graphene.
We show that in gapped bilayer graphene, quasiparticle tunneling and the corresponding Berry phase can be controlled such that it exhibits features of single layer graphene such as Klein tunneling. The Berry phase is detected by a high-quality Fabry-
We report measurements of current noise in single- and multi-layer graphene devices. In four single-layer devices, including a p-n junction, the Fano factor remains constant to within +/-10% upon varying carrier type and density, and averages between
Statistical complexity and Fisher-Shannon information are calculated in a problem of quantum scattering, namely the Klein tunneling across a potential barrier in graphene. The treatment of electron wave functions as masless Dirac fermions allows us t
Graphene electrons feature a pair of massless Dirac cones of opposite pseudospin chirality at two valleys. Klein tunneling refers to the intriguing capability of these chiral electrons to penetrate through high and wide potential barrier. The two val
We study the behavior of shot noise in resonant tunneling junctions far from equilibrium. Quantum-coherent elastic charge transport can be characterized by a transmission function, that is the probability for an incoming electron at a given energy to