ﻻ يوجد ملخص باللغة العربية
We report measurements of current noise in single- and multi-layer graphene devices. In four single-layer devices, including a p-n junction, the Fano factor remains constant to within +/-10% upon varying carrier type and density, and averages between 0.35 and 0.38. The Fano factor in a multi-layer device is found to decrease from a maximal value of 0.33 at the charge-neutrality point to 0.25 at high carrier density. These results are compared to theoretical predictions for shot noise in ballistic and disordered graphene.
We have investigated shot noise and conductance of multi-terminal graphene nanoribbon devices at temperatures down to 50 mK. Away from the charge neutrality point, we find a Fano factor $F approx 0.4$, nearly independent of the charge density. Our sh
When subjected to electromagnetic radiation, the fluctuation of the electronic current across a quantum conductor increases. This additional noise, called photon-assisted shot noise, arises from the generation and subsequent partition of electron-hol
Transport properties of graphene - superconductor junction has been studied extensively to understand the interplay of the relativistic Dirac quasiparticles and superconductivity. Though shot noise measurements in graphene has been performed to reali
The inherent asymmetry of the electric transport in graphene is attributed to Klein tunneling across barriers defined by $textit{pn}$-interfaces between positively and negatively charged regions. By combining conductance and shot noise experiments we
Owing to a linear and gapless band structure and a tunability of the charge carrier type, graphene offers a unique system to investigate transport of Dirac Fermions at p-n junctions (PNJs). In a magnetic field, combination of quantum Hall physics and